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ABSTRACT 
This article provides an overview of a statistics lecture given in summer 2017 at Takasaki Super Science High School 

located in Gunma, Japan. The lecture consisted of four topics: simulation-based inference (SBI), Benford’s Law, 
longest run of heads or tails, and the Chaos Game. Each of the topics required active participation by the students. 
Lectures using SBI and active learning methods can be very effective to help students better understand statistical and 
mathematical concepts. A complete description of each of the four lecture topics is provided including many relevant 
resources.  
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1. Introduction 

In summer 2017 I was invited to give a statistics 
lecture at Takasaki Super Science High School in Gunma, 
Japan. Although I was given the option to cover topics of 
my choosing, I was asked to reserve one topic for 
simulation-based inference, which is a method that has 
been growing in popularity for teaching statistical 
inference.  

The lecture was 2-hours in length and, to make the 
lecture more understandable to the students, I was asked 
by the high school staff to give the presentation entirely 
in Japanese. The lecture topics I covered were 
simulation-based inference, Benford’s Law, longest run 
of heads or tails, and the Chaos Game. Each of the four 
topics contained some active learning component where 
students actively participated during the lecture 
discussion. For each topic I used freely available 
web-based applications for demonstration purposes. 
Complete details for these applications will be provided 
later. 

Section 2 is devoted to the simulation-based inference 
discussion. The next lecture topic, Benford’s Law, is 
discussed in Section 3. This is followed in Section 4 by 
the longest run of heads or tails lecture topic. The last 
lecture topic on the Chaos Game is discussed in Section 
5. Section 6 is devoted to the lecture summary and 
Section 7 includes concluding remarks.  

During the lecture, I led the students through a set of 
course notes that they wrote in during the presentation. 
For the interested reader, the student version of the 
course notes (without answers) can be found at 
https://bit.ly/Takasaki-notes-student. The instructor 
version of the course notes (with answers) can be found 
at https://bit.ly/Takasaki-notes-instructor. Although most 
of the course notes were written in English, during the 
lecture I translated and explained each page in Japanese. 

 
2. Topic #1: Simulation-Based Inference (SBI) 

The first topic I discussed uses an example from 
simulation-based inference (SBI). Before I provide an 

https://bit.ly/Takasaki-notes-student
https://bit.ly/Takasaki-notes-instructor
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overview of the lecture discussion, I would like to give 
some background information about SBI and provide 
SBI references for the interested reader.  

(1) Introduction to SBI 
As the name suggests, SBI is an approach that exposes 

students to the logic of statistical inference via 
simulations. In a traditional setting statistical inference is 
taught by first introducing formal probability and 
sampling distributions. With SBI we can use simple 
devices such as dice, coins, cards, and computer 
applications to perform simulations and generate 
approximate sampling distributions. With this approach 
students can quickly gain an understanding about 
statistical inference even if they have a minimal 
statistical or mathematical background. In fact, some 
instructors even use SBI examples on the first day of an 
introductory statistics class (see Roy et al. 2014). 
Although none of the Takasaki High School students had 
any prior statistics knowledge they all seemed to 
understand the SBI lecture example very well. 

Tintle et al. (2011) claim that SBI addresses at least 
two major criticisms of the traditional curriculum. First, 
SBI allows students to focus on the logic of inference 
instead of the derivation of theoretical distributions, 
which may not seem well-connected to inference. 
Second, SBI allows students to be exposed to modern 
computational methods that are growing in popularity.  

Recently there has been an increasing use of SBI as an 
approach for teaching introductory statistics courses 
(Tintle et al. 2015; Tintle et al. 2011). In addition, when 
compared to students exposed to the traditional 
curriculum, studies have shown that there is improved 
conceptual understanding among students in courses that 
use SBI (Chance and McGaughey 2014; Hildreth et al. 
2018; Tintle et al. 2014). 

As mentioned previously, a key component of SBI is 
the use of computer simulations. Computer simulations 
can greatly enhance the understanding of concepts such 
as randomness, sampling, and variability (Chance et al. 
2007; delMas et al. 1999; Garfield and Ben-Zvi, 2008). 
The use of technology to introduce and reinforce 
essential concepts has also been promoted in the 

Guidelines for Assessment and Instruction in Statistics 
Education (GAISE) for introductory statistics at the 
college level (Franklin and Garfield, 2006; ASA, 2016) 
as well as for teaching statistics at the secondary and 
primary levels (ASA, 2007). For each of the four topics I 
discussed in class, I used web-based applications for 
demonstration purposes. For the SBI lecture I used a 
Java applet from the Rossman/Chance Applet Collection 
(http://www.rossmanchance.com/applets). For the 
remaining three topics, I used web-based applications 
known as Shiny apps which I will introduce later. 

Some textbooks that use SBI have been written by 
Chance and Rossman (2018), Diez et al. (2014), Lock et 
al. (2017), and Tintle et al. (2016). A recent high school 
level textbook that uses SBI has been written by Tintle et 
al. (2018). Finally, an SBI blog containing many 
resources can be found at https://www.causeweb.org/sbi. 

 
(2) Motivating Example 
For the first lecture topic I began by describing an 

experiment conducted by researchers at Yale University. 
These researchers wondered whether children less than a 
year old can recognize the difference between helper, 
friendly behavior as opposed to mean, unhelpful 
behavior. In order for the students to better understand 
the experimental setting, I showed a YouTube video 
created by the researchers 
(https://youtu.be/anCaGBsBOxM) containing details of 
one of the experiments they conducted. Complete 
information about the study can be found in Hamlin et al. 
(2007).  

In their experiment sixteen 10-month old infants 
participated. Each infant was shown a stage that showed 
a “climber” character who tried to repeatedly climb a hill 
but was unable to succeed. The climber character is 
shown in Figure 1(a). Then each infant was shown two 
scenes. In one scene, a “helper” character appeared from 
the bottom of the hill and helped the climber character 
reach the top. The helper character is shown in Figure 
1(b). In the other scene, a “hinderer” character appeared 
from the top of the hill and pushed the climber character 
to the bottom. The hinderer character is shown in Figure 

http://www.rossmanchance.com/applets
https://www.causeweb.org/sbi
https://youtu.be/anCaGBsBOxM
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1(c). After alternating these two scenes multiple times, 
the infant was presented with the helper and hinderer 
characters and the researchers recorded which character 
the infant reached for first. Figure 1(d) shows an infant 
reaching for one of the characters. The experimental 
outcome was that 14 out of 16 infants selected the helper 
character. 

It is important to note that the researchers randomized 
the color and shape of the climber, helper, and hinderer 
characters when repeating the experiment. Also, when 
the infant was shown the two characters at the end of the 
experiment, the researchers randomized which character 
was placed to the left and to the right of the infant. In this 
way the researchers were able to eliminate color, shape, 
and location preference as reasons for selecting a 
character. 
 

    
         (a)                     (b) 

    

         (c)                     (d) 
Figure 1. (a-d). Screenshots from the YouTube video describing the infant 

experiment conducted by Hamlin et al. (2007). 

 
(3) Class Activity 
I then led the students through a class activity 

concerning the experiment and its outcome. A photo 
taken during this activity is shown in Figure 2. Given 
that 14 out of 16 infants chose the helper character, I 
asked for possible explanations for this result. One 
obvious explanation is that the infants prefer the helper 
character. This would be the researchers’ conjecture. 
Another explanation is that the infants had no preference 

for either character and that the result occurred by chance. 
Assuming infants had no preference for either character, 
we needed to investigate whether 14 out of 16 choosing 
the helper character would be unusual. I then asked the 
students to describe how we could use a common device 
to simulate the infants’ selection process assuming they 
had no preference for either character. The students 
stated that a coin toss would be perfectly suited for this 
purpose.  
 

 
Figure 2. Interaction with Takasaki High School students during the SBI 

lecture discussion. 

 
After distributing coins to everyone in class, I asked 

each student to toss their coin 16 times. I explained that 
each toss would simulate the selection process of an 
infant having no character preference. If the outcome 
was a “head” then this would mean the helper character 
was selected. If the outcome was a “tail” then this would 
mean the hinderer character was selected. I asked each 
student to record the number of times head occurred in 
their 16 tosses. For their simulation, this value would 
correspond to the number of infants who selected the 
helper character. 

I then asked all students to report the number of times 
the helper character was selected based on their 
simulations. I summarized their results on the chalkboard 
by displaying the corresponding dotplot which I have 
reproduced in Figure 3. Given this dotplot, I asked the 
students whether the result obtained by the researchers 
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(helper selected 14 times) would be surprising assuming 
the infants had no preference. I also asked whether, 
based on this plot, the students would feel there was 
sufficient evidence to conclude that the infants did in fact 
prefer the helper character. Looking at the plot, the 
students agreed that the researchers’ result appeared to be 
unusual, if indeed, babies had no preference, and the 
students felt confident that infants in general preferred 
the helper character.   

 

 
Figure 3. Dotplot of the number of times the ‘helper’ character was 

selected from the students’ coin toss simulations.  
 
(4) Java Applet for Simulation 
The dotplot we created provided an indication of how 

unusual the researchers’ result was assuming the infants 
had no character preference, but I explained to the 
students that the plot is an incomplete picture as it is 
based on only 40 simulation results (one for each 
student). Ideally, we would like to simulate the infants’ 
selection process thousands and thousands of times. To 
investigate this, I introduced a Java applet that simulates 
coin tosses. This applet can be found at 
http://www.rossmanchance.com/applets/OneProp/OnePropJPN.html. 

A screenshot of this applet is shown in Figure 4. Using 
the applet I demonstrated for the students how to 
simulate 16 tosses of a fair coin. By modifying the 
number of repetitions, I showed how to quickly generate 
100,000 simulations. Figure 4 shows the results of 
100,000 simulations and the corresponding dotplot of the 
number of heads. Finally, I described how to use the 
applet to determine the proportion of all trials that gave 

results at least as extreme as what was observed in the 
researchers’ original experiment. For the simulation 
results shown in Figure 4, this proportion was 0.0021. 

 

 
Figure 4. Coin toss simulation Java applet screenshot. Display shows the 

distribution of the number of heads from 100,000 simulations of 16 tosses. 

The display also reports the proportion of outcomes that were at least as 

extreme as 14 heads. 
 
Given that the lecture was presented in a computing 

lab, I asked all students to practice using the applet on 
their laptops by simulating several repetitions of the 
experiment. A photo of a student using the applet on a 
laptop computer is shown in Figure 5. After each student 
performed 40 repetitions, I asked them to compare their 
applet’s dot plot to the dotplot we had created earlier in 
class (shown in Figure 3). Each student noticed that the 
images were similar. 

 

 
Figure 5. A student using the Java applet simulation. 

http://www.rossmanchance.com/applets/OneProp/OnePropJPN.html
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After students had gained sufficient practice, I asked 
them to reset the applet and perform 100,000 simulations. 
I asked the students to notice that their applet’s dotplot of 
the number of heads looks almost identical to the dotplot 
from my earlier demonstration (shown in Figure 4). I 
explained the reason for this is because, as the number of 
repetitions increases, the simulation distribution 
converges to the binomial distribution based on 16 trials 
and success probability equal to 0.5, written as B(16, 0.5). 
The students had studied the binomial distribution during 
a previous lecture on probability and so they were 
familiar with this distribution.  

I then asked the students to use the applet to determine 
the proportion of simulation outcomes that were at least 
as extreme as the researchers’ outcome. It was not the 
case that everyone had the exact same proportions, 
however their values were all very close to 0.002. I 
explained the reason for this agreement was again due to 
the fact that their simulation distributions were 
approximately B(16, 0.5). Using the B(16, 0.5) 
distribution I asked the students to compute by hand the 
exact proportion of an outcome at least as extreme as 14 
and they were able to confirm the answer is 0.00209. At 
this point they understood why everyone’s proportions 
were very close to 0.002. 

Seeing how small this proportion was the students 
agreed once again that the researchers’ result was very 
unusual assuming the infants had no character preference 
and that their simulation results provided sufficient 
evidence the infants preferred the helper character.  

(5) SBI and Traditional Curriculum  
It is important to point out that SBI methods need not 

replace traditional teaching content and methods but can 
instead enhance them. In a traditional setting we usually 
teach statistical inference by introducing the following 
concepts: null and alternative hypotheses, test statistic, 
null distribution, and P-value. In many of the 
introductory statistics classes I teach at my university, I 
of course introduce and cover all these topics. But 
recently, for some of these introductory classes, I have 
initially introduced this SBI example involving the infant 
experiment. Then, at a later point when I formally 

introduce these inferential concepts mentioned 
previously, I remind my students about the SBI example 
and, by doing so, I believe the students are better able to 
comprehend the inferential concepts. 

For example, when I formally introduce “null 
hypothesis,” after reminding them about the experiment, 
students immediately determine “infants have no 
character preference” as the natural null hypothesis in 
that setting. For “alternative hypothesis,” students 
suggest “infants prefer the helper character” as the 
natural alternative hypothesis. For “test statistic,” 
students will recall that we counted the number of heads 
from the coin tossing simulation and this number could 
be naturally thought of as the test statistic. For “null 
distribution,” keeping in mind the no character 
preference as the null hypothesis, the test statistic follows 
the binomial distribution, which is also the null 
distribution. Students will recall that, as the number of 
repetitions increases, the simulation distribution from the 
applet converges to this binomial distribution. With this 
in mind, students can have an intuitive understanding of 
what the null distribution is. Finally, for “P-value,” 
students will recall that we determined the proportion of 
simulation outcomes that were at least as extreme as the 
observed experimental result. As the number of 
repetitions increases, the simulation proportion 
converges to the P-value, and so students can have an 
intuitive understanding of what the P-value is. And so, 
by first introducing an SBI example, I believe it is 
possible for students to better comprehend inferential 
reasoning. Therefore, I strongly believe that SBI methods 
can greatly enhance traditional teaching content and 
methods. 
 
3. Topic #2: Benford’s Law 

(1) Motivating Example 
For the second lecture topic I began by having the 

students examine the leading digits of the first 18 values 
of 2n (21 to 218). These values are shown in Table 1 with 
leading digits underlined. 

For a given set of numbers, the possible values of the 
leading digit are 1, 2, …, 9. I asked the students whether, 

 



Journal of Japan Society of Mathematical Education, 101(3), 28-39 
シミュレーションに基づく統計的推論とアクティブ・ラーニングの授業事例, ⽇本数学教育学会誌第 101 巻 3 号, 28–39 

Table 1  Leading digits for 21 to 218. 

21 = 2 27 = 128 213 = 8192 

22 = 4 28 = 256 214 = 16384 

23 = 8 29 = 512 215 = 32768 

24 = 16 210 = 1024 216 = 65536 

25 = 32 211 = 2048 217 = 131072 

26 = 64 212 = 4096 218 = 262144 

 
in general, they would expect any leading digits to occur 
more frequently than others. The students replied that 
they expected the values to occur uniformly, that is with 
equal probability 1/9. Applying this assumption to the 
first 18 values of 2n, this would imply each possible 
leading digit would occur roughly twice. Returning to the 
list of 18 values I asked the students to determine the 
observed frequencies of leading digits and the students 
quickly found that these frequencies were not close to 
uniform. The comparison of uniform frequencies and 
observed frequencies of leading digits for 21 to 218 are 
shown in Table 2. Most students immediately noted the 
curious pattern where the observed frequencies seem to 
decrease as the leading digit value increases. 
 
Table 2  Uniform versus observed frequencies of leading digits for  

21 to 218. 

 Leading Digit 

 1 2 3 4 5 6 7 8 9 

Unif. Freq. 2 2 2 2 2 2 2 2 2 

Obs. Freq. 5 4 2 2 1 2 0 2 0 

 
One might argue that observed frequencies would be 

more uniform if we examined a larger number of values 
of 2n. To investigate this, I displayed for the students the 
first 90 values of 2n. Having the students work in teams I 
again asked the students to determine the observed 
frequencies of the leading digits for these 90 values. 
With a uniform probability assumption each leading digit 
would occur 10 times. However, the students determined 
that the observed frequencies are distinctly non-uniform. 
The comparison of uniform frequencies and observed 
frequencies of leading digits for 21 to 290 are shown in 
Table 3. Again, the students noted the unexpected pattern 

where the observed frequencies tend to decrease as the 
leading digit value increases.  
 

Table 3  Uniform versus observed frequencies of leading digits for  

21 to 290. 

 Leading Digit 

 1 2 3 4 5 6 7 8 9 

Unif. Freq. 10 10 10 10 10 10 10 10 10 

Obs. Freq. 27 16 11 9 7 6 5 5 4 

 
A helpful visual aid for the frequencies of leading 

digits for 2n is shown in Figure 6. Here the leading digits 
for 21 to 2234 are shown in an array. For example, in the 
first row of the array, the initial values 2, 4, 8, 1, and 3 
correspond to the leading digits of 21, 22, 23, 24, and 25 
respectively. I displayed for the students an updated array 
where all leading digits of 1 are emphasized and circled. 
This allowed the students to easily see the high 
frequency of the leading digit 1. This is shown in Figure 
6(a). I then showed the students updated arrays marking 
the locations of the leading digits of 2, 3, 4, …, and 9. 
With each subsequent updated array the decreasing 
frequency of the leading digit becomes immediately 
obvious to the students. The arrays for the leading digits 
of 3, 6, and 9 are shown in Figures 6(b), 6(c), and 6(d) 
respectively.     

(2) Benford’s Law 

At this point of the lecture the students were quite 
intrigued by the unusual pattern of observed frequencies 
and I then introduced Benford’s Law. This law states that 
the relative frequency of the leading digit (d) of a set of 
numbers is often determined by the following probability 
function: 
 

P(d) = log10(1 + 1/d)   where d = 1, 2, …, 9. 
 

The leading digits and corresponding probabilities 
from Benford’s Law are shown in Table 4. With this 
table the students were able to note the decreasing nature 
of the probabilities as d increases. 

I then displayed a graph comparing the probabilities 
based on the uniform distribution and Benford’s Law.  
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 (a) 

 (b) 

 (c) 

 (d) 

Figure 6. (a-d). Arrays of leading digits for 21 to 2234 with marked locations 

for (a) 1, (b) 3, (c) 6, and (d) 9. 

 
With this image students can quickly see the stark 
contrast between the two probability models. This image 
is shown in Figure 7(a). 

 

Table 4  Leading digit probabilities based on Benford’s Law. 

d P(d) 

1 log10(1+1/1)  ≒  .301 

2 log10(1+1/2)  ≒  .176 

3 log10(1+1/3)  ≒  .125 

4 log10(1+1/4)  ≒  .097 

5 log10(1+1/5)  ≒  .079 

6 log10(1+1/6)  ≒  .067 

7 log10(1+1/7)  ≒  .058 

8 log10(1+1/8)  ≒  .051 

9 log10(1+1/9)  ≒  .046 

 

  

          (a)                           (b) 

Figure 7. (a) Comparison of leading digit probabilities based on uniform 

distribution and Benford’s Law. (b) Comparison of observed leading digit 

percentages for 21 to 290 and Benford’s Law percentages. 
 
For the earlier class activity where students 

determined the observed frequencies of leading digits for 
21 to 290, I converted the frequencies to percentages and 
displayed an image comparing these observed 
percentages to the percentages from Benford’s Law. This 
image is shown in Figure 7(b). With this image the 
students can see the surprising agreement of observed 
percentages with Benford’s Law across all leading digits. 

As n increases, the observed percentages of leading 
digits for 21 to 2n converge with the percentages from 
Benford’s Law. The agreement of the leading digit 
distribution with Benford’s Law is not unique to the 
sequence of the powers of 2. The leading digits for the 
sequence of powers of other bases (3n, 4n, 5n, …) will 
yield similar behavior. Benford’s Law also applies to the 
leading digits of additive sequences, such as the 
Fibonacci sequence. Finally, as described by Luque and 
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Lacasa (2009), a variation of Benford’s Law applies to 
the leading digits of the sequence of prime numbers. 

(3) Real-World Examples 
There are many real-world data sets where the leading 

digit distribution is well-described by Benford’s Law. 
Some examples I discussed included the surface areas of 
lakes in California, Japanese population data from the 
2015 Japanese Census, and stock prices from the Nikkei 
225 Stock Exchange. For all these examples the leading 
digit distribution closely follows Benford’s Law. A 
comparison of observed leading digit percentages for the 
Japanese stock exchange data and Benford’s Law 
percentages is shown in Figure 8(a).  

 

  

          (a)                           (b) 

Figure 8. (a) Comparison of observed leading digit percentages for closing 

prices of Nikkei 225 stocks and Benford’s Law percentages. (b) 

Comparison of observed leading digit percentages for fraudulent charges 

and Benford’s Law percentages. 

 
The last real-world data example I discussed was from 

the area of fraud detection. This example, as described 
by Nigrini (1999), is based on 23 fraudulent checks by an 
employee in the office of the Arizona State Treasurer. As 
with stock prices, general payments can have a leading 
digit distribution that closely follows Benford’s Law. I 
asked the students to examine the 23 fraudulent 
payments and they immediately found that its leading 
digit distribution was very different from Benford’s Law. 
There was a high frequency of the leading digit being 8 
or 9, and there was a low frequency of the leading digit 
being 1 or 2. Such behavior is the opposite from 
Benford’s Law. I then displayed an image comparing the 
observed leading digit percentages of the fraudulent 

charges and Benford’s Law. The image, shown in Figure 
8(b), reveals a clear difference in the two distributions 
and shows how payment fraud can be detected. I then 
stated to the students that currently many companies, 
countries, and governments are using Benford’s Law and 
statistical inferential techniques to detect fraud. 

(4) Shiny App: Benford’s Law 

I concluded the discussion on Benford’s Law by 
introducing web-based applications I created in Shiny 
(Chang et al., 2018). Shiny is a web application 
framework for the programming language R (R Core 
Team, 2018). With Shiny it is possible to easily create 
web applications that have similar functionality to Java 
applets. Doi et al. (2016) provide an introduction on how 
to use Shiny to create web application teaching tools for 
statistics. A wide variety of Shiny apps can be found at 
the “Shiny App Teaching Tools Collection” website 
(https://statistics.calpoly.edu/shiny). Two of the Shiny 
apps from this site are based on Benford’s Law, and I 
introduced both during the lecture. 
The first Shiny app I introduced, titled “Benford's Law: 
Sequences,” examines the leading digit distribution for 
additive, power, and prime number sequences. The 
second Shiny app, titled “Benford's Law: Data 
Examples,” examines the leading digit distribution for 
census data provided by the US Census Bureau and stock 
data from stock markets around the world (including 
Japan). A screenshot of the second Shiny app is shown in 
Figure 9. This figure gives a comparison of observed 
leading digit percentages for stock prices from the 
Australia S&P/ASX 200 Stock Market and Benford’s 
Law percentages. The Shiny app also reports a 
Chi-square goodness-of-fit test to assess the agreement 
between the two distributions. The large P-value reported 
in Figure 9 shows that Benford’s Law provides a 
reasonable fit for the distribution of leading digits of 
Australian stock prices. 
4. Topic #3: Longest Run 

(1) Motivating Example 
For the third lecture topic I began with another activity 

involving coin tossing (Scheaffer et al. 2004). Students 
were assigned to one of two groups (Group A and Group 

https://statistics.calpoly.edu/shiny
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Figure 9. Benford’s Law Shiny app screenshot. Display shows the 

comparison of observed leading digit percentages for stock prices of 

Australian stocks and Benford’s Law percentages. 
 
B). Students in Group A flipped a fair coin 30 times and 
wrote the outcome for each toss (H = heads, T = tails). 
Students in Group B were not given a coin and instead 
wrote the outcomes of what they imagined might result 
from tossing a fair coin 30 times. When the tasks were 
completed I asked one student from each group to write 
their results on the board. Figures 10(a) and 10(b) show 
example outcomes from Group A and Group B 
respectively. After the outcomes were written on the 
board I asked all students to compare the results and 
comment on any differences. 

 

 (a) 

 

 (b) 

Figure 10. (a) Outcomes of 30 actual tosses of a fair coin.  

(b) Outcomes of 30 imagined tosses of a fair coin.  
 
Students were quickly able to note that in the 

outcomes from Group A there are unexpectedly long runs 
of heads and tails. This is contrasted by the outcomes in 
Group B which exhibit shorter runs of heads and tails. 
The short runs in Group B’s results indicate that students 
expected coin toss outcomes to frequently alternate 
between heads and tails. Note that in Figure 10(a) the 

maximum run length is 5 whereas in Figure 10(b) the 
maximum run length is only 3. Was it the case that the 
unexpected long runs from Group A were due to strange 
luck or instead that such long runs typically occur when 
tossing a fair coin? What would we expect to see if we 
tossed a coin 100 times or even 200 times? To investigate 
these questions, I then introduced a Shiny app I created 
to simulate the run length outcomes from a fair coin. 

(2) Shiny App: Longest Run 

The following Longest Run Shiny app can be found at 
https://statistics.calpoly.edu/shiny. A screenshot of this 
app is shown in Figure 11. As shown in the figure, some 
graphical sliders appear in the left panel of the app. The 
first slider determines the number of coin tosses to 
simulate (10 to 400). The second slider controls the 
minimum run length which determines what particular 
runs to mark in color. Using this app I showed 
simulations of 30, 50, 100, and 200 tosses of a fair coin. 
Also, for each simulation, I showed the occurrence of 
various run lengths by adjusting the minimum run length 
slider. 

By displaying repeated simulations using this Shiny 
app the students were able to see that the unexpectedly 
long runs found in Figure 10(a) are, in fact, not so 
unusual after all. In addition, the students were also able 
to note that long runs occur more often than expected. 
For example, in Figure 11, the outcomes of 200 fair coin 
tosses are displayed and run lengths of at least 5 are 
shown in boldface. The app reports that the maximum 
run length was 8 which, for many students, is 
unexpectedly high. Also note that there are 11 runs with 
a run length of at least 5. From this discussion students 
were able to see that simple random outcomes such as 
those from fair coins can sometimes behave very 
unexpectedly. 

The Shiny app also provides some statistical inference 
by reporting the point estimate and a prediction interval 
for the longest run, as shown at the bottom of Figure 11. 
Due to the fact that this interval offers a range of 
reasonable values for the longest run, which is not a 
parameter, we do not refer to this as a confidence interval 
but rather as a prediction interval. More details 

https://statistics.calpoly.edu/shiny
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concerning longest run theory can be found in Schilling 
(1990; 2012). 
 

 
Figure 11. Longest Run Shiny app screenshot. Display shows the outcomes 

of 200 fair coin tosses where run lengths of at least 5 are shown in boldface. 

Point estimate and prediction interval of longest run are also reported. 
 

5. Topic #4: Chaos Game 
(1) Motivating Example 
The final lecture topic was based on what is known as 

the Chaos Game. This discussion, admittedly, is not 
related to statistics but it is an interesting example from 
probability based on a random walk. 

I first described how the Chaos Game is played. We 
start with an image showing the vertices of a triangle and 
we select a random starting point. It is not required for 
the starting point to be within the triangle. A triangle 
vertex is then selected at random. The midway point 
between the starting point and the selected vertex is 
marked. A triangle vertex is again selected at random. 
Then the midway point between the most recently 
marked point and the selected vertex is marked. One then 
repeats this process again and again to create many 
points on the image. 

An example of the game is shown in Figure 12. Figure 
12(a) shows the triangle vertices and a random starting 
point. Figure 12(b) shows the next step where the left 
vertex was randomly selected and the midpoint is 
marked. Figure 12(c) shows the next step where the 
upper vertex was randomly selected and the new 
midpoint is marked. Finally Figure 12(d) shows the next 
step where the left vertex was randomly selected and the 
new midpoint is marked. 

   
         (a)                     (b) 

   
         (c)                     (d) 

Figure 12. (a-d). Progression of the initial steps of the Chaos Game. 

 
After explaining the rules of the game, I asked the 

students to play the game themselves on a sheet of paper 
and to repeat the process for about 10 steps. Once they 
had completed this task I asked the students what kind of 
image they believe would result after 10,000 steps. Most 
students responded that the final image would be 
comprised of random points filled uniformly within the 
triangle and exhibiting no specific pattern. An example 
of such an image is shown in Figure 13(a). However, the 
students were shocked to learn that the final image looks 
like the beautiful and unexpected pattern shown in 
Figure 13(b). I told the students this is a famous image 
known as a fractal and is specifically known as 
Sierpinski’s Gasket. To convince the students of this 
result I then introduced a Shiny app I created to simulate 
the Chaos Game. 

 

   

 (a)                     (b) 
Figure 13. (a) The final image most students expect after playing the Chaos 

Game for many steps. (b) The actual image that results after playing the 

Chaos Game for many steps. 
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 (2) Shiny App: Chaos Game 

The following Chaos Game Shiny app can be found at 
https://statistics.calpoly.edu/shiny. A screenshot of this 
app is shown in Figure 14. The default setting of the app 
is to play the Chaos Game using the vertices of a triangle. 
In the “Initial Sequence” tab the app allows the user to 
see the progression of the game for the first 100 steps. In 
the “Extended Sequence” tab the app allows the user to 
see the progression from step 100 to step 1,000. In the 
“Complete Sequence” tab the user can see the 
progression from step 1,000 to step 50,000. Figure 14 
shows the result of the Chaos Game for the first 10,000 
steps. As can be seen, the image of Sierpinski’s Gasket 
has appeared.  

 

 

Figure 14. Chaos Game Shiny app screenshot. Display shows the outcomes 

of the first 10,000 steps of the Chaos Game. The unexpected image is 

known as Sierpinski’s Gasket. 

 
The Shiny app also allows the user to try other 

variations of the Chaos Game. Instead of the vertices of a 
triangle, the user can select other shapes such as a square, 
pentagon, or hexagon. In each case the final result of the 
Chaos Game yields another form of a beautiful and 
unexpected fractal.  

Finally, I showed the students another Shiny app I 
created (found at the previously mentioned website) that 
features the Chaos Game in a three-dimensional setting. 
In this app the user can simulate the game using the 
vertices of a tetrahedron, cube, or dodecahedron. In each 
case the final result yields an unexpected 
three-dimensional fractal. 
  

6. Lecture Summary 
At the end of the lecture I summarized all four lecture 

topics and how they are all tied together. For each of the 
lecture topics we discussed, I reminded the students that 
we encountered an interesting pattern. For the infant 
experiment example using SBI, we encountered the 
binomial distribution pattern. For the examples from 
Benford’s Law, we encountered an interesting leading 
digit pattern. For the longest run example, we 
encountered an unexpected long run pattern. And for the 
Chaos Game example, we encountered the surprising 
fractal-based point location pattern. A common theme 
that connects all these lecture topics is that, in the 
presence of randomness, there exist patterns. I then 
mentioned to the students that a major goal of statistics is 
to understand the patterns induced by randomness so that 
we may better answer research questions. 

Given that this was my first visit to a Super Science 
High School, I asked the Takasaki High School faculty to 
describe what their students are like. One of the faculty 
said, “Our students hope to have careers in medicine, 
science, and technology. As such, they look to become 
the leaders of science and technology in Japan.” 
However, the faculty members have also remarked that 
these students are not always very motivated to study 
statistics and often ask questions such as “Why do we 
need to study statistics?” and “How is statistics 
beneficial for research?” To help emphasize the 
importance of statistics for the students, I concluded my 
lecture with the following statement: “Regardless of 
what you will study, statistics will play a crucial role in 
your education and your future profession.” My hope 
was that, at least in some small way, through the lecture 
topics we discussed, I was able to convey to the students 
how useful and fascinating statistics can be. 

 
7. Conclusion 

Lectures using SBI and active learning methods can be 
very effective to help students better understand 
statistical and mathematical concepts. Each of the four 
lecture topics I discussed (SBI, Benford’s Law, longest 
run of heads or tails, Chaos Game) required participation 

https://statistics.calpoly.edu/shiny
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by the students and it seemed everyone was actively 
involved. Each of the topics had a corresponding 
web-based application that was easy to use. Given that 
these applications are freely available by using a web 
browser, I encouraged all students to continue to use the 
applications on their own to investigate other application 
features we were not able to examine during lecture. 

Overall, I felt the lecture was successful and well 
received. Aside from the students, several high school 
faculty members were also in attendance and I was told 
that many of the faculty found the lecture to be 
informative and interesting. In addition, their faculty 
mentioned they were planning to adopt my lecture 
presentation materials of all four topics for their math 
courses. Recently I have received other invitations to 
give this presentation and the next presentation will be 
during summer 2019 at Kanonji Super Science High 
School in Kagawa, Japan. 
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