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ABSTRACT
We present a numeric search algorithm to determine confidence
intervals for the parameters of the negative binomial distribution
that are substantially more precise (shorter) than those of any exist-
ing method. We derive confidence intervals for the mean μ for any
specified number of successes k by means of a conditional minimal
cardinality approach that efficiently accommodates the relationship
of the variability of the negative binomial distribution to its mean.
Confidence intervals for the success parameter p are easily obtained
from the inverse relationship between μ and p.
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1. Introduction

In this paper we present a new approach to interval estimation that we apply to obtain
short confidence intervals based on a sample from a negative binomial distribution. Our
method is based on an efficient search through the candidate acceptance sets that a negative
binomial confidence procedure can have. The method is strict in the sense of satisfying the
coverage condition infθP(θ ∈ CI) ≥ 1–α, and results in confidence intervals that tend to
be shorter than those of existing methods. (Note: The term exact is often used rather than
strict; however this may lead to confusion since the term exact can also refer to the fact
that the confidence procedure is derived from the actual distribution involved – here, the
negative binomial – rather than from, say, a normal approximation.)

Much attention has been given to the problem of determining short confidence inter-
vals for the parameters of the binomial and Poisson distributions, and length minimizing
procedures have been obtained for both cases (see Sterne [1]; Crow [2]; Crow and Gardner
[3]; Casella [4]; Schilling and Doi [5]; Schilling and Holladay [6]). Recent work (Wang [7];
Schilling and Stanley [8]) has produced short confidence intervals for the parameters of
the hypergeometric distribution. No such confidence procedures have been developed for
the parameters of the negative binomial distribution, however.

We take the negative binomial random variableX to be the number of failures before the
kth success, with success probability p. Inmedical applications p is known as the prevalence
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rate.Note thatX can also represent the sufficient statistic
∑n

i=1 Xi obtained from a random
sample of i.i.d. geometric or negative binomial random variables, since this sum is also
negative binomially distributed.

Our primary objective is to develop a strict 1 − α level confidence procedure for the
mean μ = E(X) = k(1–p)/p; that is, an infinite set of intervals (lx, ux), x = 0, 1, . . . for
which infμ P(μ ∈ [lX , uX)) ≥ 1− α. (We use half-open intervals to avoid certain technical
difficulties that arise with fully open or fully closed intervals.) Confidence intervals for p
are readily obtained from the inverse relationship p = 1/(1+ μ/k).

To see how one can approach the problem at hand, it is instructive to look at Figure 1,
in which estimation of the parameter λ of the Poisson distribution at 95% confidence is the
goal. This situation is similar to estimation of the negative binomial parameter μ in that
the parameter space (0, ∞) is the same.

Each curve labelled a-b in Figure 1 is a portion of the graph of the function
Pab(λ) = P(a ≤ X ≤ b), where X has a Poisson(λ) distribution. The set of curves shown
are those that have minimal cardinality for each λ; that is, those for which b−a+ 1 is
as small as possible among curves that rise above the confidence level. We refer to the
set of values a, a+ 1, a+ 2, . . . , b–1, b as the acceptance set AS(a-b). This terminology
derives from the duality between confidence procedures and hypothesis tests; see for exam-
ple Theorem 9.2.2 of Casella and Berger [9]. The coverage probability function (cpf ) of a
confidence procedure is comprised of the acceptance curve segments AC(a-b) = Pab(λ)
associated with the particular acceptance sets used for each λ, and this cpf determines the
corresponding confidence procedure (Schilling and Doi [5]). The property that the a and
b sequences each be monotone is essential in order that none of the resulting confidence
intervals contain gaps.

For small values of the parameter in both the Poisson and negative binomial cases, X is
also likely to be small. Thus the acceptance sets for these parameter values consist of small
nonnegative integers. As the parameter increases, the values of a and b are each mono-
tonically nondecreasing, with the a value increasing by one at any transition from one
acceptance curve to another. As the cardinalities of the acceptance sets gradually increase
with the parameter, the b value sometimes increases by more than one at such a transition.

Figure 1. Acceptance sets for a strict Poisson 95% confidence procedure.
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These observations form the basis for our search for a short negative binomial con-
fidence procedure. In the binomial and Poisson cases, choosing appropriate acceptance
curve segments corresponding to minimal cardinality acceptance sets produces confi-
dence procedures whose confidence intervals minimize overall interval length in a suitably
defined sense (see Schilling and Doi [5]; Schilling and Holladay [6]). In the case of the
negative binomial distribution, however, this approach does not lead to short confidence
intervals for μ unless k is large. We illustrate the reason for this in Section 6.

We show below that our procedure generates much shorter confidence intervals than
any existing negative binomial confidence procedure.

2. An approach to finding a negative binomial confidence procedure forµ

yielding short confidence intervals

Our strategy for finding a negative binomial confidence procedure that yields short inter-
vals follows the method described by Bain and Engelhardt [10] and others. We construct
two nondecreasing, right continuous, integer-valued functions a(μ), b(μ) defined on
μ > 0 satisfying.

Pμ(a(μ) ≤ X ≤ b(μ)) ≥ 1–α ∀μ > 0,

with lx = infμ: b(μ) ≥ x, ux = supμ: a(μ) ≤ x, and the goal of making the resulting con-
fidence intervals [lx, ux), x = 0, 1, 2, . . . as small as possible. The above condition ensures
that the confidence procedure is strict.

To implement our approach for given k and confidence level 1–α, we use a grid search
of values of μ beginning at 0 with spacing �, constructing an array M whose rows are
indexed by the values of μ in �, 2�, 3�, . . . and whose columns are indexed by the values
a = 0, 1, 2, . . . . Each entry M(μ, a) of M is the smallest value of b ∈ 0, 1, 2, . . . for which
Pab(μ) = P(a ≤ X ≤ b) ≥ 1–α. If no such value exists the entry is left empty.

The entries in the a = 0 column are nondecreasing as μ increases, while the situation
is a bit more complicated for a > 0. Typically the initial values of each column with a > 0
will be empty. This is because when μ is small, no value of b results in Pab(μ) ≥ 1–α since
too much (more than α) of the probability content of the distribution of X is concentrated
on the values of X < a. At the first value of μ which allows Pab(μ) ≥ 1–α , the value of
b = M(μ, a) is necessarily very large since P(X < a) is nearly α. From this value of μ on,
the column values of M(μ, a) are nonincreasing until reaching a minimum value m(a),
then are nondecreasing thereafter. It is also clear that for fixed μ the row values of M are
nondecreasing as a increases.

As an illustration of the column behaviour of M described above, consider Figure 2,
which shows the negative binomial probability mass function (pmf) for k = 10 and a = 4.
Suppose α =0.05. When μ is sufficiently small a significant portion of the mass (>α) is
concentrated on lower values of X, which makes it impossible for M(μ, a) to be defined.
Figure 2(a), which displays the pmf for μ = 4.50, illustrates this point. It can be helpful
to think of the pmf form as a wave, where the wave’s crest’s lateral position increases
with μ. When μ is small, the proximity of the crest to a makes P(X < a) large. In
Figure 2(a), P(X < a) = 0.3889; hence P(X ≥ a) = 0.6111 and thus there is no b such
that P(a ≤ X ≤ b) ≥ 1–α = 0.95.
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Figure 2. Negative binomial probability mass functions for k = 10, a = 4 and (a) μ = 4.50,
(b) μ = 9.79, (c) μ = 10.28, (d) μ = 17.50. Crosshatched bars correspond to P(X < a), grey bars
correspond to P(a ≤ X ≤ M(μ, a)), and white bars correspond to P(X > M(μ, a)).

In Figure 2(b) μ is increased to 9.79, and we can see a shift in the pmf, with the
crest of the wave moving sufficiently to the right that P(X < a) is now slightly under
0.05. Due to the fact that P(X ≥ a) is now barely above 0.95, the smallest b such that
P(a ≤ X ≤ b) ≥ 0.95 is large. In this case b = M(μ, a) = 35. Asμ becomes slightly larger,
the corresponding pmf looks similar to that shown in Figure 2(b); however the increase in
μ results in a decrease in P(X < a), transferring more of the mass towards the central por-
tion of the pmf; thereforeM(μ, a) need not be as large as before. At some particular μ the
wave is located at a sweet spot whereM(μ, a) achieves aminimum. In the present example,
M(μ, a) reaches a minimumm(a) = 23 when μ = 10.28. This is shown in Figure 2(c).

When μ is greater than this optimal value, the right tail enlarges and the pmf has suf-
ficient mass for larger values of X to cause M(μ, a) to increase. As the wave continues
to shift to the right, the probability content at smaller X values diminishes and it is nec-
essary to reach further into the upper tail region in order to find the smallest b where
P(a ≤ X ≤ b) ≥ 0.95. See Figure 2(d).

The proposed confidence procedure is obtained fromM as follows: Begin in the a = 0
column. Specifically, beginning at μ = � and moving down throughM, choose for each
value ofμ the acceptance setAS(a-b) indicated by the current column a and the given value
of b inM. Increment μ until reaching μa = the smallest value of μ for which the value of
b in column a+ 1 achieves its minimum,m(a+ 1). At that point switch to the acceptance
set AS((a+ 1)-b) and proceed in the same fashion as before indefinitely.
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Consider the rationale for this process: For small μ no acceptance sets other than those
of the form AS(0-b) are possible, and using for any μ a larger value of b than that listed
in M would lead to unnecessarily large confidence intervals, since if b′ > M(μ, a) then
using AS(0-b′) rather than AS(0-M(μ, a)) puts the lower confidence limits of the confi-
dence intervals for x = b+ 1, b+ 2, . . . , b′ at μ instead of at higher values. Transitioning
from any a to a+ 1 where AS((a+ 1)-b) uses a minimal value of b has a similar benefit by
delaying the start (i.e. increasing the lower confidence limits) of the confidence intervals
for b+ 1, b+ 2, . . . . The logic behind the subsequent transitions is similar. Although we
do not restrict to minimal cardinality acceptance sets overall, for each fixed awe do indeed
choose the acceptance set with minimal cardinality at each μ. Consequently, we refer to
our method as a conditional minimal cardinality (CMC) confidence procedure.

Now consider further what happens when there is a transition from one column to the
next. Switching from column a to column a+ 1 at μa marks μa as the upper confidence
limit for x = a, and also establishesμa as the lower confidence limit for all x betweenM(μa,
a)+ 1 and m(a+ 1). Points where the upper confidence limit for one x is the lower limit
for another x are called coincidental endpoints (Casella [4]).

Transitioning earlier than where b = m(a+ 1) would lead to gaps in the confidence
intervals for values of b in the new column that exceedm(a+ 1). Consider also the option
of transitioning at a somewhat later value of μ where b is still equal to m(a+ 1). At first
glance this might appear to be a better strategy. In many cases the valuem(a+ 1) would be
more than one larger than the value of b, say ba, used for the μ value immediately before
the transition. This would result in larger lower confidence limits and therefore potentially
shorter confidence intervals for x = ba+ 1, ba+ 2, . . . ,m(a+ 1) at the expense of a larger
upper confidence limit and therefore a longer confidence interval for only x = a.However,
delaying the transition in this way actually gives worse results because the confidence inter-
vals for the values of x > ba above will also have larger upper limits when the transition
is made from their columns, and the increases in those upper confidence limits exceeds
the increases in their lower confidence limits resulting from the earlier transition. Near the
end of Section 6 we provide an illustration that clarifies this phenomenon.

3. A CPF perspective

We provide here a description of our procedure from a cpf perspective. Given a, let B(a)
be the set containing all b ≥ a such that Pμ(a ≤ X ≤ b) ≥ 1 − α. The distinct non-empty
entries of M in the a column then correspond to the set of curves obtained from the
functions RB(a) = {Pμ(a ≤ X ≤ b) : b ∈ B(a)}. Plotting this collection of arcs makes a
rainbow-like picture as shown in Figure 3 for k = 10, 1 − α = 0.95 and a = 0, 3, 15.

Recall that for fixed column a,m(a) is the smallest b such that max
μ

{Pμ(a ≤ X ≤ b)} ≥
1 − α. Since Pμ(a ≤ X ≤ b) < Pμ(a ≤ X ≤ b + 1) for all μ, the function Pμ(a ≤ X ≤
m(a)) will be the core (interior arc) of each rainbow. See for example the middle plot in
Figure 3. The elements of RB(3) shown, in order from the top arc to the core, are the func-
tions Pμ(3 ≤ X ≤ b) for b = 23, 22, 21, 20, and 19 (the core). Thus asμ increases through
the range of values shown in the plot,M(μ, 3) decreases from 23 to 19 and then increases
to 23 again.
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Figure 3. Sample rainbow plots for k = 10, 1 – α = 0.95 and a = 0, 3, and 15.

Figure 4. Illustration of how the cpf of the CMCmethod transitions between rainbowswhen k = 5 and
1–α = 0.95. RB(1) is used fromμ = 4.41 toμ = 7.57, at which point the cpf transitions to RB(2), which
is used untilμ = 10.33. Overlaid solid lines represent the portion of the rainbows belonging to the cpf.

We can describe our CMC procedure from a CPF perspective as follows: For each μ in
{�, 2�, . . .} use only acceptance curves from RB(0), until switching to the core of RB(1)
when it first rises above the confidence level. While eachRB(a) is in use, choose for each
successiveμ the lowest curve in that rainbow having Pμ(a ≤ X ≤ b) ≥ 1 − α until switch-
ing to the core ofRB(a + 1) once it rises above the confidence level, continuing this process
indefinitely. See Figure 4. A detailed description of the algorithm is provided in Appendix.

4. Problems withminimal cardinality for negative binomial estimation

For other discrete distributions such as the binomial, Poisson and hypergeometric, optimal
interval estimation is realized by using (unconditional) minimal cardinality acceptance
curves throughout the entire parameter space. Schilling and Holladay [6] showed, for
example, that for estimation of the parameter of a Poisson distribution, the method of
Crow and Gardner [3] is the unique length minimizing confidence procedure when using
a running average interval length criterion. Crow and Gardner’s (CG) approach is to use
only minimal cardinality acceptance curves. Whenever there are multiple curves AC(a-b)
of minimal cardinality available, CG uses the one with largest values of a and b.
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Figure 5. The Crow-Gardner method yields a gap in the confidence interval for x = 0 when k = 9.

Applying this approach to estimation of the negative binomial mean, however, regularly
produces gaps in the resulting confidence intervals. Figure 5 illustrates a specific instance
where the cpf of CG for k = 9 and 1–α = 0.95 produces a gap. The figure shows all mini-
mal cardinality curves in the given range. Solid black lines represent CG’s cpf. Notice that
the cpf transitions from AC(0-8) to AC(1-10), and then to AC(0-9). The result is that the
confidence interval for x = 0 has a gap corresponding to the interval where the cpf follows
AC(1-10).

CG’s choice of acceptance curves will often result in a transition from curve AC(a-b)
to AC((a–1)-(b–1)). This causes a gap in the confidence interval for x = a–1, since the
previously generated confidence interval for a–1 will have the subinterval μ: cpf (μ) =
AC((a–1)-(b–1)) appended to it.

To resolve the gap problem while preserving minimal cardinality acceptance regions
we can require that an acceptance curve AC(a-b) only be used if all other curves AC(a′-
b′) of the same cardinality with b′ <b and a′ <a fall below the confidence level before
AC(a-b) does. This requirement would make AC(1-10) ineligible in the example shown.
The resulting modified procedure uses AC(0-9) in place of AC(1-10), resolving the gap.
We refer to this approach as the Adjusted Crow-Gardner method (ACG).

In the case k = 1 (the geometric distribution), however, each acceptance curveAC(0-b)
remains above AC(1-(b+ 1)) for all μ. As a result, the cpf for ACG will ipso facto be made
up entirely of acceptance curves from AC(0-b), b ≥ 0; consequently, all of the resulting
confidence intervals have no upper limit. This may be a suitable result if one is interested
in a lower confidence bound for μ, but produces confidence intervals of infinite length
rather than short ones. Furthermore, it is shown in what follows that ACG is universally
inferior in length performance to our CMC procedure, often by a substantial amount.

5. Conditional minimal cardinality: some results

Figure 6 shows an example of the coverage probability function of the CMC confidence
procedure for the case when k = 5 and 1–α = 0.95 for μ ≤ 40. Note that the cpf stays
close to the confidence level and in fact equals it frequently. This property implies that the
resulting confidence procedure generates short confidence intervals.
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Figure 6. Coverage probability function for the CMCmethod when k = 5 and 1 – α = 0.95.

Table 1. Runtimes for the
CMC algorithm.

k Runtime (seconds)

1 29.68
2 2.14
3 0.90
4 0.61
5 0.49
6 0.45
7 0.37
8 0.36
9 0.37
10 0.31

To provide the reader with a rough idea of the runtime for our algorithm, we ran our
code on a home desktop computer to produce 95% confidence intervals for all 0 ≤ x ≤ 100
for varying values of k. Table 1 shows the resulting runtimes for 1 ≤ k ≤ 10, while Figure 7
shows the resulting runtimes for 2 ≤ k ≤ 50. With the exception of k = 1 and 2 all run-
times were a fraction of a second. Runtimes are longer for the smallest values of k because
the upper confidence limits are very large, necessitating evaluation of theM array for large
values of μ.

6. Comparison to existing procedures

Casella and McCulloch [11] developed the first explicit strict procedure for estimating a
parameter of a negative binomial distribution; also determined by Lui [12]. This procedure
is the natural counterpart to the Clopper–Pearson method for the binomial distribution,
obtained by inverting the equal tailed level α test ofH0: p = p0 to yield a confidence inter-
val for p. Using the relationship between p and μ given earlier allows conversion of their
confidence intervals into confidence intervals for μ.

Blaker [13] introduced a new approach for interval estimation for discrete distributions
that can be applied to the negative binomial distribution as follows. For any particular value
of the parameter to be estimated (μ or p), determine the tail probability generated by the
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Figure 7. Runtimes to compute 95% confidence intervals forμ for all 0 ≤ x ≤ 100.

observed data value x, T = min(P(X ≤ x), P(X ≥ x)). Add this probability to the largest
tail probability in the opposite tail (if any) not exceeding T. If the resulting sum is greater
than α, then the given parameter value is included in the confidence interval for x.

Byrne and Kabaila [14] also developed a method for interval estimation for a parame-
ter of a discrete distribution. Their method, in brief, is analogous to Crow and Gardner’s
method in that it also restricts tominimal cardinality sets, but transitions as late as possible
while keeping the sequences of {a} and {b} each nondecreasing.

Blyth and Still [15] proposed a procedure for the binomial case that transitions at points
intermediate to those where the Crow-Gardner and Byrne-Kabaila procedures transition.
Schilling andDoi [5] developed a gaplessmodification of amethod proposed by Sterne [1].
Their LCO (Length/Coverage Optimal) procedure transitions at points similar to where
the Blyth and Still procedure does and generally gives similar confidence intervals, but has
the property of maximizing coverage among all possible methods that minimize average
confidence interval length.

We examined the performance of the various procedures described above and found
that all of the methods that rely on minimal cardinality acceptance sets perform similarly,
and all produce confidence intervals that are significantly longer than those obtained from
the methods of Casella/McCulloch (CM), Blaker (B), and the CMC procedure.

Figure 8(a)–(d) displays the lengths of the intervals obtained from CM, B and ACG
relative to those of the CMC procedure for k = 1, 2, 5 and 10 at 95% confidence for
0 ≤ x ≤ 100. Results for Adjusted Crow/Gardner (ACG) are shown for k = 5 and 10 only,
as for k = 1 ACG interval lengths are infinite and for k = 2 they are not feasible to include
in the same graph since they are generally more than seven times as long as those of the
CMCmethod. Figure 9(a)–(d) displays corresponding results for expected 95% confidence
interval length. We also examined the relative performance of these methods for the same
values of k for confidence levels 90% and 99% and found the results to be very similar to
those for 95%.

Figures 8(a)–(d) and 9(a)–(d) demonstrate that the CMC method produces substan-
tially shorter confidence intervals than the methods of either Casella and McCulloch and
Blaker, and are therefore much shorter than those of any existing method. For instance for
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Figure 8. (a)–(d) 95% confidence interval lengths of competingmethods for estimation ofμ relative to
those of− obtained from the CMC confidence procedure for k = 1, 2, 5 and 10.

k = 5 both CM and B have an expected 95% confidence interval length more than 10%
longer than that of the CMC method for all μ ∈ (0,100); for smaller k the length savings
of the CMC method are even more dramatic as the best competitors produce intervals on
the order of 70% longer.
Odds of Failure: Since the mean of the negative binomial distribution is given by
μ = k(1–p)/p, confidence limits for μ lead trivially to confidence limits for the odds of
failure (1–p)/p, which is also the expected number of failures Y until the next success at
any stage of the inverse sampling process, since the distribution of Y is memoryless.

We conclude this section with a further explanation of why the CMC approach is supe-
rior for estimating the mean of a negative binomial distribution to procedures that use
(unconditional) minimal cardinality acceptance sets exclusively. Figure 10 shows the 95%
confidence intervals for μ in the case k = 10 for 0 ≤ x ≤ 50 for our CMC procedure and
for theAdjustedCrow/Gardner procedure, which usesminimal cardinality sets exclusively,
plotted against the values ofμwhere the transitions between acceptance sets occur. At each
such value ofμ, the acceptance sets of each method are represented by the horizontal span
between the twopoints plotted for thatmethod. It is evident from the graph that these spans
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Figure 9. (a)–(d) Expected 95% confidence interval lengths of competing methods for estimation ofμ
relative to those of− obtained from the CMC confidence procedure for k = 1, 2, 5 and 10.

are narrower for ACG than for our procedure, as they must be since the former spans have
minimal cardinality and the latter typically do not. However, confidence interval lengths
are shown by the vertical spans. Looking at Figure 10 we can see that, at any x, the vertical
span for our method is less than that of ACG; therefore our confidence interval lengths are
smaller.

The phenomenon exhibited in the case shown above applies in general regardless of
the confidence level or value of k. The effectiveness of the CMC confidence procedure lies
in how it pulls down the upper confidence limits, with minimal decreases in the lower
confidence limits.

The reason this phenomenon occurs in the negative binomial case and not for other dis-
crete distributions such as the binomial, Poisson and hypergeometric, is that the variability
of the negative binomial distribution (as measured for example by the standard deviation)

is of the same order of magnitude as the mean itself: σX =
√

μ(μ+k)
k ∼ O(μ), whereas for

other distributions the variability of the observed randomvariable growsmuch slower than
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Figure 10. Acceptance sets and confidence intervals for the CMC confidence procedure and for ACG.

the parameter, and a graph analogous to Figure 10 shows roughly parallel sequences for the
upper and lower confidence limits.

7. Estimation of p

Confidence intervals for p are directly obtainable from those for μ via the relationship
p = 1/(1+μ/k). The efficacy of CMC here is somewhat different than what occurs when
estimating μ, however the conditional minimal cardinality method still retains a marked
advantage in estimation accuracy over all of the competing methods for the majority of
the parameter space. Figure 11(a)–(d) shows expected 95% confidence interval length for
k = 1, 2, 5 and 10 at 95% confidence for Casella and McCulloch, Blaker and Adjusted
Crow/Gardner relative to the CMC method. Results for the Sterne/LCO, Byrne/Kabaila
and Blyth/Still procedures are very similar to those of ACG and are therefore omitted. We
alsomention here that Byrne [16] developed a confidence procedure for the geometric case
that produces short intervals for the probability of failure 1 − p; Byrne included a table of
95% confidence limits for x = 0, 1, 2, . . . , 10. Making the trivial change to obtain CMC
confidence intervals for 1 − p from those for p, we find that the CMC intervals are slightly
shorter in nearly every case than Byrne’s.

Figure 11 demonstrates that, except for small values of p, each of the competing confi-
dence procedures yields substantially greater expected confidence interval length for the
values of k investigated than does the proposed procedure.

8. Adjustment for tied endpoints

One of the natural properties a confidence procedure can possess is monotonicity in its
endpoints. Specifically, whenever x is increased by one we would expect that both limits of
the confidence interval would also increase. Strict confidence procedures sometimes pro-
duce instances of tied endpoints, however. For the CMC procedure, there are cases where
consecutive lower limits for μ are the same. In order to achieve the desired monotonicity,
our algorithmmakes slightmodifications of those limits by replacing themwith an increas-
ing sequence of equally spaced values, ending with the previously tied one and beginning
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Figure 11. Expected 95% confidence interval length of competingmethods for estimation of p relative
to that of the CMCmethod for k = 1, 2, 5 and 10.

either (i) immediately after the value below the tied one or (ii) at the value that increases
the length of the resulting interval by 1%, whichever is larger. Corresponding adjustments
to the upper limits for p are obtained from the relationship p = 1/(1+ μ/k). These adjust-
ments have a negligible effect on expected interval length in both cases. See Schilling and
Holladay [6] for further details on this approach to breaking ties.

9. Inverse sampling is more precise than sampling with fixed sample size

It turns out that for estimation of the success parameter p from Bernoulli trials, the pre-
cision of estimation obtained from the CMC procedure nearly always exceeds that of
binomial sampling that produces the same outcome. We compared interval lengths for
a fixed number of successes k and a random number x of failures to those obtained from
the LCO binomial confidence intervals of Schilling and Doi [5] for a random number of
successes k in n = k+ x trials, for n = 100 and various k. The latter intervals are from
a procedure that yields minimum possible average length for given n of the binomial
confidence intervals for x = 0, 1, . . . , n.
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Figure 12. Ratios of 95%geometric confidence interval length obtained from the CMCprocedure to the
length of the corresponding LCO binomial confidence interval.

Figure 12 shows ratios of minimal cardinality procedure 95% confidence interval length
to binomial 95% confidence interval length for the geometric case (k = 1). On average, the
first 100 geometric 95% confidence intervals are approximately 31% shorter than the corre-
sponding binomial confidence intervals; 90% confidence intervals are approximately 37%
shorter, and 99% confidence intervals are approximately 32% shorter. Differences for k > 1
are less dramatic, but negative binomial confidence intervals produced by our method are
still noticeably shorter than the corresponding binomial intervals in most cases.

10. Conclusion

The conditional minimal cardinality confidence procedure provides substantially more
precise interval estimates of μ (as well as the odds of failure) than any existing method,
using a computationally efficient algorithm. The corresponding confidence procedure for
estimating p has shorter expected length throughout the great majority of the parame-
ter space. We therefore recommend our procedure for general use in situations calling for
negative binomial estimation. Researchers may also wish to consider employing inverse
sampling rather than binomial sampling when possible, as using the CMCmethod for the
former is likely to produce shorter confidence intervals than are obtained for the latter.

Technical Note

All computations were performed using the R software. A Shiny web app (available
from the authors) for determining confidence intervals for μ and for p is available at
https://discrete-ci.shinyapps.io/nb_ci/.
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Appendix

Weprovide here a detailed discussion of how our algorithm for finding confidence limits works. First
note that RB(a) is non-empty for all a because we can always increase μ enough that Pμ(X ≥ a) >

1 − α, thus we can find a large enough b such that Pμ(a ≤ X ≤ b) ≥ 1 − α. Second, much of our
algorithm hinges on the fact that a graph of the curves in each RB(a) is actually ‘rainbow-like’ in
shape as depicted in Figures 3 and 4. This follows from that fact that acceptance curves are unimodal
and satisfy Pμ(a ≤ X ≤ b) < Pμ(a ≤ X ≤ (b + 1)) for all μ, and non-negative integers a ≤ b.

Determining the interior arc Pμ(a ≤ X ≤ m(a)) of each rainbow is straightforward since the
location of maxμ{Pμ(a ≤ X ≤ b)} can be shown to have a closed form solution:

μmax(a, b) = k(1 − pmax)/pmax,

where

pmax(a, b) = 1 −
[

(a + k − 1)(a + k − 2) · · · (a)
(b + k)(b + k − 1) · · · (b + 1)

] 1
b−a+1

.

https://doi.org/10.1093/biomet/41.1-2.275
https://doi.org/10.1093/biomet/43.3-4.423
https://doi.org/10.1093/biomet/46.3-4.441
https://doi.org/10.2307/3314658
https://doi.org/10.1080/00031305.2014.899274
https://doi.org/10.1080/03610926.2015.1006782
https://doi.org/10.1080/01621459.2014.966191
https://doi.org/10.1080/03610926.2020.1737879
https://doi.org/10.1002/sim.4780141307
https://doi.org/10.2307/3315916
https://doi.org/10.1081/STA-200052109
https://doi.org/10.1080/01621459.1983.10477938
https://doi.org/10.1111/j.1467-842X.2005.00417.x


JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 141

Thus a simple while loop can easily find m(a) by looking for the smallest value of b satisfying
maxμ{Pμ(a ≤ X ≤ b)} ≥ 1 − α. In particular we can start the loop at b = m(a − 1) + 1 and incre-
ment b by one until maxμ{Pμ(a ≤ X ≤ b)} first exceeds the confidence level. We can also quickly
compute the locations where each acceptance curve Pμ(a ≤ X ≤ b) that exceeds the confidence
level intersects it using R’s uniroot function or any similar efficient algorithm. Let root1(a, b) and
root2(a, b) be the smaller and larger of these two roots, respectively, where root1(a, b) = DNEwhen
a = 0. All upper and lower endpoints of the procedure correspond to these roots.

We begin the algorithm with a = 0. Starting with μ = 0, use AS(a − m(a)) until μ =
root2(a,m(a)), at which point use the subsequent curve AS(a − (m(a) + 1)). Then use
AS(a − (m(a) + 1)) until μ = root2(a,m(a) + 1), followed by the subsequent curve AS(a −
(m(a) + 2)). Continue in a similar fashion until μ = root1(a + 1,m(a + 1)), at which point tran-
sition to the next rainbow, RB(a + 1), and move to the curve AS((a + 1) − m(a + 1)). Repeat as
before using the subsequent curves of the rainbow whenever the current curve drops below 1 − α,
continuing until the core of the next rainbow first rises above the confidence level (at which point
we change to that rainbow).

A transition that occurs between curves from the same rainbow, Pμ(a ≤ X ≤ b) to
Pμ(a ≤ X ≤ b + 1), determines the lower endpoint for b + 1, l(b + 1) = root2(a, b). When
transitioning between different rainbows RB(a) to RB(a + 1), we transition between curves
Pμ(a ≤ X ≤ b) and Pμ(a + 1 ≤ X ≤ m(a + 1)), for m(a + 1) ≥ m(a) + 1. The location of
this transition occurs at root1(a + 1,m(a + 1)) and determines the upper endpoint for a,
u(a) = root1(a + 1,m(a + 1)), and the lower endpoints for b + 1, . . . ,m(a + 1), l(b + 1) = · · · =
l(m(a + 1)) = root1(a + 1,m(a + 1)).

To determine confidence intervals for all x up to some value n, the algorithm continues until
l(n) is determined. The remaining values of u(x) can then be separately determined by u(x) =
root1(x + 1,m(x + 1)).

Note: To obtain a confidence interval only for one specific value of x, a shortcut can be used
to determine the lower endpoint for x: Start the search at the first transition to RB(a) (at μ =
root1(a,m(a))) where a is the largest value suchm(a) < x (i.e no acceptance curves have involved x
quite yet). Then l(x) will correspond to one of the next few acceptance curve transitions, including
possibly the transition to the next rainbow, RB(a + 1) (but, no later than that, otherwise m(a + 1)
< x, leading to a contradiction). u(x) is determined as before by u(x) = root1(x + 1,m(x + 1)).
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