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A Coverage Probability Approach to Finding an Optimal Binomial
Confidence Procedure

Mark F. SCHILLING and Jimmy A. DOI

The problem of finding confidence intervals for the success
parameter of a binomial experiment has a long history, and a
myriad of procedures have been developed. Most exploit the
duality between hypothesis testing and confidence regions and
are typically based on large sample approximations. We in-
stead employ a direct approach that attempts to determine the
optimal coverage probability function a binomial confidence
procedure can have from the exact underlying binomial dis-
tributions, which in turn defines the associated procedure. We
show that a graphical perspective provides much insight into the
problem. Both procedures whose coverage never falls below the
declared confidence level and those that achieve that level only
approximately are analyzed. We introduce the Length/Coverage
Optimal method, a variant of Sterne’s procedure that minimizes
average length while maximizing coverage among all length
minimizing procedures, and show that it is superior in impor-
tant ways to existing procedures.

KEY WORDS: Binomial confidence intervals; Exact confi-
dence interval; Length minimizing.

1. INTRODUCTION

Obtaining a confidence interval for a binomial success param-
eter is one of the most common and basic of statistical problems.
A great number of solutions have been proposed in the 80-plus
years since the original development of confidence intervals,
continuing even into the 21st century. Yet after all this time and
study, still no consensus has emerged.

One reason is that two distinct standards have been used—one
which requires the confidence procedure to adhere to the “strict”
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classical requirement for coverage: infpP(p ∈ CI) ≥ 1–α where
p is the binomial parameter, the other which allows this re-
quirement to be satisfied only approximately. Here, we present
a new method that is optimal with respect to length and cover-
age for the strict case, and provide an approximate version that
outperforms existing procedures for the approximate coverage
criterion. We adopt Casella’s (1986) terminology in defining a
confidence procedure for a given sample size n as a collection
of n + 1 intervals, one for each possible value of the bino-
mial random variable X. Thus,we do not consider randomized
confidence intervals here.

The prevailing confidence procedure presented in elementary
textbooks, known as the Wald method, is not a strict method.
The Wald interval, p̂ ± zα/2(p̂(1 − p̂)/n)1/2, is one of a large
collection that are based on a normal approximation, with vari-
ous conditions on minimum sample size. In addition to leaving
unaddressed the instances where those conditions are not met,
the coverage probability of the Wald interval is often far below
the claimed level—even for cases that are well within the guide-
lines. See Brown, Cai, and DasGupta (2001) for a thorough
analysis.

Many alternatives to the Wald method have been developed,
most based on concepts central to statistical theory such as
the normal approximation to the binomial, likelihood, the score
function, Bayesian methods, and so forth. Ultimately, all that
matters to those who use confidence intervals in the real world
is performance. From this standpoint, in our view, there are two
prime criteria: Are adequate coverage probabilities achieved
throughout the entire range of parameter values? That is, does
the confidence procedure deliver what it promises? And does
the procedure produce confidence intervals that are as narrow as
possible? Certainly there are other points of view regarding the
primacy of these two criteria. See, for example, Vos and Hudson
(2005, 2008) for an alternate perspective.

In the evaluation of confidence procedures for practical use,
we regard the two overriding considerations to be length mini-
mization and maximal coverage, in that order. What is desired
is an interval estimate of the parameter value that is as precise
as possible and can be regarded as very likely to contain it. We
believe that practitioners often tend to think loosely of a confi-
dence interval as a virtual de facto guarantee that the parameter
lies within the interval. Thus, maximizing coverage without an
increase in average length is beneficial, since overshooting the
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stated confidence level puts practice more in line with this com-
mon interpretation.

Historically, generating confidence intervals by means of a
formula was also a valuable goal. That is a highly anachro-
nistic view today, given that exact confidence intervals (those
based directly on the binomial distribution) are easily generated
and available via statistical software and the Internet. Several
other properties are desirable; since in our opinion these are
secondary in importance, we will defer addressing them until
after considering coverage and length.

2. BINOMIAL COVERAGE PROBABILITY
FUNCTIONS

For given p, the coverage probability CP(p) of a binomial
confidence procedure is the chance of observing a number of
successes X for which the associated confidence interval con-
tains p. The set of all CP(p), 0 ≤ p ≤ 1, is called the cov-
erage probability function (cpf ) of the confidence procedure.
For any subset � of {0, 1, 2, . . ., n}, we define the accep-
tance curve AC�(p) to be the �-likelihood function; that is,
AC�(p) = P (X ∈ �) = ∑

x∈� ( nx )px (1−p)n−x considered as a

function of p. The coverage probability function is necessarily
composed of some collection of portions of acceptance curves,
and stipulating the cpf is equivalent to specifying the confidence
procedure (up to a set of measure zero). Thus, the binomial
confidence interval problem can be approached directly from
consideration of how to choose acceptance curves for each p.

For a sensible confidence procedure, a value of x that is rea-
sonably likely to occur for a given p should contain that p in the
confidence interval for x, while an unlikely value of x should
not. Since any binomial probability distribution is unimodal, the
values of x that should exclude p will be found in one or both
tails of the distribution. We can therefore restrict consideration
to acceptance curves associated with the sets �lu = {l, l +1, l
+2, . . ., u–1, u}, which are called acceptance intervals (Blyth
and Still 1983).

In what follows, we write AC(l–u) for AC�(p) when � = �lu.
We call the difference u−l the span of the acceptance curve.
Figure 1 shows labeled portions of all such curves for n = 8 that
are above or not much below 90%. For a strict 90% confidence
procedure, the cpf must be built from segments that lie entirely
above the line at 0.90, while a reasonable approximate 90%
confidence procedure could include portions of those curves
shown in Figure 1 that fall somewhat below 0.90.

2.1 Type O and Type I Acceptance Curves

Note that AC�0u
(p) ≥ P (X = 0) = (1 − p)n and

AC�l n
(p) ≥ P (X = n) = pn; all such acceptance curves

are continuous and have a maximum of 1, therefore each
exceeds 1–α for p sufficiently near 0 and 1, respectively.
We call curves of the form AC�0u

(p) and AC�l n
(p) Type O

acceptance curves. If we wish to build a cpf for a strict 90%
confidence procedure for n = 8, we can see from Figure 1
that for small p only the Type O acceptance curves AC(0–0),
AC(0–1), . . ., AC(0–8) are in play. As p increases, the AC(0–0)

0.0 0.2 0.4 0.6 0.8 1.0

0.
85

0.
90

0.
95

1.
00

p

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

0−8

1−7

2−6

0−7 1−80−6 2−8
0−5 3−8

0−4 4−8
0−3 5−8

0−2 6−8

0−1 7−8

0−0 8−8

1−6 2−7

1−5 3−7

1−4 4−7

2−5 3−6

Figure 1. Portions of acceptance curves eligible for strict and reasonable approximate 90% confidence procedures for n = 8. Each curve AC(l–u)
is labeled with its l and u values.
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curve drops out, then AC(0–1) does, and so on. After p ≈ 0.26,
acceptance curves for which l > 0 are eligible for selection.
Then after p ≈ 0.74, only the Type O curves AC(0–8), AC(1–8),
. . ., AC(8–8) can be used.

We define Type I acceptance curves to be those associated
with acceptance intervals for which both l > 0 and u < n.
It is easy to show that such curves are continuous, unimodal,
and satisfy limp→0+ AC(p) = limp→1− AC(p) = 0. Thus for p
near 0 and 1, a binomial coverage probability function must
be comprised entirely of Type O acceptance curves; elsewhere,
a cpf will nearly always consist entirely of Type I acceptance
curves. It is easy to distinguish the Type O and Type I curves in
Figure 1 as the monotone and nonmonotone curves, respectively.

To see the role acceptance curves play in an established con-
fidence procedure, consider the “adjusted Wald” method pro-
posed by Agresti and Coull (1998) for the case n = 8, 1−α =
90%. This procedure simply adds a set number of successes and
failures (possibly noninteger) to the data, much in the manner of
a Bayesian prior, before computing the Wald interval. Adjusted
Wald is not a strict confidence procedure, and therefore includes
portions of acceptance curves that fall below 90%. However, the
adjusted Wald’s cpf aligns much more closely with the nomi-
nal confidence level than that of the ordinary Wald procedure.
Figure 2(a) displays the cpf for the 90% adjusted Wald proce-
dure for n = 8, overlaid on the acceptance curves this procedure
uses. (Technical note. In constructing cpf graphs for this article,
we treat confidence intervals as half open, of the form [lx, ux),
except for x = n, where we take the interval to be closed. This
avoids spikes in the graphs at values of p which represent the
upper limit of one acceptance interval and the lower limit of
another. We sometimes include vertical line segments between
consecutive acceptance curves for better visualization of the
cpfs.)

Figure 2(a) shows an inner section composed of seven Type I
pieces, surrounded by Type O regions on each side. This struc-
ture occurs for any reasonable confidence procedure unless n is
very small or the confidence level is very high, in which case
there is no Type I region. Figure 2(b) shows the interplay be-

tween the coverage probability function, the specific acceptance
curves involved, and the resulting confidence intervals.

2.2 Constraints on Acceptance Curve Choices

The adjusted Wald cpf shown in Figures 2(a) and (b) is sym-
metrical around p = 0.5, and as a result the associated con-
fidence intervals satisfy the equivariance property (Blyth and
Still 1983):

If x generates the confidence interval [lx, ux] , then

n − x yields the confidence interval [1 − ux, 1 − lx] .

Equivariance is essential for a binomial confidence procedure,
since switching “success” and “failure” should yield an equiva-
lent outcome. A confidence procedure is equivariant if and only
if it has a symmetrical cpf, thus an acceptable procedure must
satisfy CP(p) = CP(1–p).

Next, observe that as p increases from 0 to 1 in Figure 2(b),
the values of l and u for the acceptance curves used are nonde-
creasing. Looking back at Figure 1, we can see that in principle
a confidence procedure could be constructed that did not have
this property. For example, the cpf could jump from AC(1–6)
to AC(1–5) for a time before having to return to a curve for
which u ≥ 6. But then the confidence set for x = 6 would not
be an interval, as it would have a gap where p corresponds to
AC(1–5). To avoid gaps, the sequences of l and u values must
each be nondecreasing in x.

2.3 Some Typical Coverage Probability Functions

Figures 3(a)–(c) show the cpfs of the Wald, adjusted Wald,
and Clopper–Pearson procedures, respectively, for the case
n = 20, 1 − α = 95%. A Clopper–Pearson confidence interval
(Clopper and Pearson 1934) is obtained by solving each of the
equations P(X ≥ x) = α/2 and P(X ≤ x) = α/2 for p, the solu-
tion to the first equation being lx and the solution to the second

Figure 2. (a) Adjusted Wald coverage probability function and associated acceptance curves (n = 8, nominal confidence level = 90%). (b)
Interplay between the cpf, the specific acceptance curves involved, and the resulting confidence intervals for the adjusted Wald 90% procedure.
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Figure 3. (a)–(c). Coverage probability plots for the (a) Wald, (b) adjusted Wald, and (c) Clopper–Pearson procedures for n = 20, 1− α = 95%.

being ux. (For x = 0 and x = n there are no solutions to the
first and second equations, respectively; the Clopper–Pearson
method adopts l0 = 0 and un = 1 for these two cases.) Note first
that, as mentioned earlier, the Wald cpf falls far below the con-
fidence level in several places; in fact at p = 0 and 1, the Wald
cpf drops to 0. Furthermore, nearly the entire cpf lies below
the confidence level. The adjusted Wald fares much better, but
still falls below the confidence level for many values of p. The
Clopper–Pearson procedure, in contrast, produces a cpf that is
excessively high, often considerably above the confidence level.
Of itself this is not a drawback, but it comes at a significant cost:
the corresponding confidence intervals are substantially larger
than necessary.

All three of these popular procedures share the feature that in
the large central region of the plot, the cpf shifts very frequently
between different Type I acceptance curves. Although such be-
havior invariably manifests itself for formula based binomial
confidence procedures, such large and frequent fluctuations in
the cpf are a reflection of an inefficient method.

3. LENGTH MINIMIZING STRICT CONFIDENCE
PROCEDURES

The primary measure of the quality of a confidence procedure
that achieves satisfactory coverage, whether in the strict sense
or some appropriately defined approximate sense, is in our view
the shortness of its confidence intervals. There are two criteria
that are commonly used—average length and expected length.
Average length is simply the arithmetic mean of the lengths of
the n + 1 confidence intervals that a binomial confidence pro-
cedure can produce. Expected length, in contrast, is a function
of p, for each p weighting each of the n + 1 possible confidence
intervals by the probabilities of the associated values of x. If
expected length is integrated with respect to p over the entire
parameter space [0,1], the result is average length. That is, av-
erage length is a functional of expected length that provides an
overall assessment of expected length. Consequently, we focus
only on average length and often refer to it simply as length.

Figure 1 illustrates that there are many choices that can be
made regarding the sequence of acceptance curve segments that
can be used to construct the cpf of a legitimate binomial con-
fidence procedure. It follows from Crow (1956) and Casella

(1986), however, that selecting at each p an acceptance curve
with minimal span among those curves with coverage above
1−α is necessary and sufficient for a strict procedure to have
minimum average length.

Figure 4 shows all portions of acceptance curves that have
minimal span for n = 8, 1−α = 90%. Note that in the Type
O regions the acceptance curves with minimal span are unique.
The locations where the left-side Type O curves intersect the
confidence level therefore establish the lower limits of the con-
fidence intervals for the first several values of x at the highest
possible values of p. Each such confidence limit can easily be
shown to be the α-quantile of a beta distribution with parameters
x and n − x + 1. Corresponding statements apply to the upper
limits for the highest values of x, by equivariance.

In the region of the graph where portions of Type I curves are
eligible for selection (being ≥ 1–α), there are many intervals in
which two or more acceptance curves with the same minimal
span exist. These intervals play a key role in the quest for an
optimal procedure.

3.1 The Search for an Optimal Binomial Confidence
Procedure

Our goal is to find a strict binomial confidence procedure that
maximizes coverage among all length minimizing procedures.
Initially the recipe appears simple: select at each p the highest

Figure 4. All portions of acceptance curves available for a strict length
minimizing procedure for n = 8, 1−α= 90%.
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acceptance curve of minimal span for that p. (In the case when
two acceptance curves of minimal span each have maximal
height, we assign to p the one with the higher l and u values to
maintain half-open intervals of the form [,).) This turns out to
be equivalent to a method proposed by Sterne (1954) under an
entirely different rationale. In the language of acceptance curves,
Sterne’s approach was to construct acceptance intervals for each
p by entering the values of x in decreasing order of their chance of
being observed until AC�l u

(p) ≥ 1 − α. It follows immediately
that no other set of x values with as few or fewer elements
can have higher total probability; furthermore the unimodality
of binomial distributions implies that for any p Sterne’s set of
values must be consecutive. This establishes the equivalence
with the recipe given above.

For any R in {0, 1, 2, . . . , n}, form the upper envelope function
NR = NR(p) of all acceptance curves for which u − l = R. We
call NR the necklace of span R. The cpf of Sterne’s method lies
entirely on necklaces. Specifically, for each p, the lowest lying
necklace that is above 1−α is selected. Figure 5 shows the case
n = 20, 1−α = 95%. Sterne’s cpf is comprised of portions
of the necklaces with spans ≤ 8. An immediate consequence
of the above strategy is that each point where CP(p) = 1−α

establishes a single confidence limit, and each necklace cusp
point represents both a lower confidence limit for one x and an
upper confidence limit for another x.

Unfortunately, Crow (1956) pointed out that this approach
sometimes produces confidence sets for some values of x that
are not intervals—that is, they contain gaps, as the necessary
monotonicity in l and u described in Section 2.2 fails to hold.
We now show precisely when and why this happens by identi-
fying an essential relationship between Type I curves. We then
investigate remedies.

One would expect that the peaks of the Type I acceptance
curves must move to the right as l and/or u increase, as held in
the case shown in Figure 1. We confirm in Proposition 1 that

this is true in general; the proof is given in the Appendix. Let
pM (l, u; n) be the unique value of p that maximizes AC(l−u)
for given sample size n:

Proposition 1. For fixed n and l > 0, pM (l, u; n) is an increas-
ing function of u for l ≤ u ≤ n – 1, and for fixed n and u < n,
pM (l, u; n) is an increasing function of l for 1 ≤ l ≤ u.

Recall that to obtain confidence intervals (having no gaps), the
values of l and u for the sequence of acceptance curves used in
a confidence procedure must be nondecreasing. As has already
been shown, the Type O curves AC(0–u) and AC(l–n) each have
a maximum of 1, occurring at p = 0 and p = 1 respectively. From
this fact together with Proposition 1, it follows that whenever
the cpf transitions from one acceptance curve to another as p
increases, the maximum of the new acceptance curve cannot
occur to the left of the previous one’s or a gap will result.

Figure 6 illustrates how this requirement may be violated for
Sterne’s method. Moving from left to right, the cpf travels along
the first four Type O curves before moving to necklace N4 and
using first AC(0–4), then briefly AC(1–5). At approximately p
= 0.141, however, AC(1–5) drops below the confidence level
and the necklace with minimum span now becomes N5. Since
AC(1–5) drops out before the first cusp of N5, the Sterne cpf
next uses AC(0–5), a curve whose maximum is to the left of
AC(1–5)’s, and the value of l decreases in this transition. Con-
sequently, the 90% confidence set for x = 0 has a gap from ap-
proximately 0.127 to 0.141, consisting of the p interval in which
the cpf lies on AC(1–5). We see that if a portion of the cpf lies
on an acceptance curve AC(l–u) that rises just slightly above the
confidence level but then drops below the confidence level and
out of contention before (for p < 0.5) the location of the cusp of
the necklace just above (joining AC((l−1)–u) to AC(l–(u+1))),
then a gap results, as Sterne’s cpf transfers to an acceptance
curve with a lower value of l. Figure 6 in fact shows two
such gaps, the second arising from the fact that AC(2–7) drops

Figure 5. Cpf of Sterne’s confidence procedure for n = 20, 1−α = 95%. The barely visible portions near p = 0 and p = 1 belong to the necklace
N0.
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Figure 6. Portion of Sterne’s cpf for n = 20, 1−α = 90% showing how gaps can occur.

below the confidence level before the cusp joining AC(1–7) to
AC(2–8).

The collection of all length minimizing strict binomial confi-
dence procedures—that is, those that do not produce gaps—was
identified by Casella (1986). These procedures can now be char-
acterized as those deriving from every possible cpf that is com-
posed entirely of pieces of the acceptance curves of minimal
span but never moves from one curve to another whose peak is
to the left of its own.

The fact that Sterne’s approach often fails to produce con-
fidence intervals (and perhaps because in the 1950s there was
resistance to nonformula based methods) may explain why his
method was not widely adopted. Crow (1956) and Blyth and
Still (1983) proposed remedies for the gap problem, each based
on altering the transition rule whenever there is a choice between
acceptance curves of minimum span to ensure that each of the
sequences of l and u values are monotone increasing. However,
Crow’s method has a critical drawback in that its interval end-
points in (0,1) are often the same for different x. For example, for
n = 20, 1−α = 95% the confidence intervals for x = 9, 10, and
11 are respectively (0.222, 0.707), (0.293, 0.707), and (0.293,
0.778), surely an unappealing result. Crow’s procedure also has
significantly lower coverage than Sterne’s method. Blyth and
Still’s method does not have the shortcoming of shared lower or
upper endpoints and performs quite well overall, but its cover-
age is lower than for Sterne’s method for many p as its cpf does
not lie entirely on the necklaces.

3.2 The LCO Procedure

Both Crow’s and Blyth and Still’s methods eliminate the gaps
that Sterne’s procedure sometimes generates, but sacrifice cov-
erage to do so. There are other ways to handle the gap prob-
lem, however. One is to simply “fill the gaps” (Reiczigel 2003,
Hirji 2006). For example, in the first case shown in Figure 6,

the Sterne confidence set for x = 0, [0, 0.127)∪[0.141, 0.147),
yields the “gap filled” confidence interval [0, 0.147). Obviously
this remedy fails to achieve length minimization, however.

We now present an alternative strategy that avoids gaps
and still produces a strict length minimizing procedure, hav-
ing the additional property of maximizing coverage among all
such procedures. We call the resulting procedure and intervals
Length/Coverage Optimal, or LCO for short. The confidence
intervals produced by the LCO method are identical to those
of Sterne’s procedure when the latter does not produce gaps;
however, we investigated all 300 cases with n ≤ 100 and 1−α =
90%, 95%, or 99% and found gaps for some x in approximately
40% of them.

When the highest acceptance curve of minimal span, say
AC((l−1)–u), produces a gap for a particular x, the LCO solution
for p < 0.5 is to substitute for p in that gap the next alternative
acceptance curve of minimal span available, AC(l–(u+1)). See
Figure 7; for n = 20, 1−α = 90% using AC(1–6) in place of
AC(0–5) removes the second subinterval 0.141 ≤ p < 0.147
from the confidence set for x = 0 and transfers those p to the
confidence interval for x = 6. This eliminates the gap for x = 0.
The gap that occurs for x = 1 is similarly resolved by moving
directly from AC(2–7) to AC(2–8) rather than first to AC(1–7).

To summarize, the cpf of the LCO method lies on the highest
acceptance curve of minimal span except in the relatively rare
cases where it is necessary to resolve a gap, where it substi-
tutes the next highest available acceptance curve of the same
span. Thus, LCO maximizes coverage among all strict, length
minimizing procedures.

Here is a formal description of our algorithm for determining
LCO confidence intervals:

Step 1. For each p from 0 to 0.5 incremented in steps of size �p,
let ACp(l−u) denote the acceptance curve achieving the
maximum value (greater than or equal to 1−α) among
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Figure 7. LCO cpf for n = 20, 1−α = 90%. The gray circles show where the LCO cpf eliminates the gaps caused by using the highest available
acceptance curves of minimal span.

all curves of minimal span at p. If multiple minimal
span curves assume the maximum, choose ACp(l–u) to
be the curve with the largest value of l. Assign p to the
confidence intervals for each integer x in [l, u], except
as provided in Step 2.

Step 2. Whenever ACp(l–u′) and ACp+�p(l′–u′) in Step 1 are
such that l′ < l, let k be the largest integer such that
Step 1 yields ACp+k�p(l′–u′). Reassign p, p+�p, . . . ,
p+k�p to the confidence intervals for each integer x in
[l′+1, u′+1].

Step 3. The assignment of an acceptance curve for each p >

0.5 (and therefore the completion of all confidence in-
tervals) follows from the symmetry requirement CP(p)
= CP(1–p), which is needed for equivariance.

The complete set of LCO confidence intervals for 1 ≤
n ≤ 100 at confidence levels 90%, 95%, and 99% (based
on a grid size of �p = 10−6 and rounded to five decimal
places), along with R code for the LCO algorithm, is posted
at http://www.calpoly.edu/∼jdoi/LCO.

4. OTHER DESIRABLE PROPERTIES

Aside from minimal length and maximal coverage, there are
several other properties that one would want a binomial confi-
dence procedure to have, although we regard these as much less
important than length and coverage because they do not pertain
solely to the specific binomial experiment that a practitioner is
analyzing. We explore several of these below.

4.1 Monotonicity in x and n

Blyth and Still (1983) listed two properties that reflect how
we would expect binomial confidence intervals to behave. First,
if x is increased by one (for fixed n) we would expect that both
limits of the confidence interval would also increase. Second,

given x and n, if an additional trial resulted in success (failure),
both limits of the confidence interval should increase (decrease).

The first of these monotonicity properties fails for Crow’s
procedure, as indicated earlier. The second property does not
hold generally for any reasonable confidence procedure since
for all n the lower limit for x = 0 is 0 and the upper limit for x =
n is 1. Furthermore in practice binomial confidence intervals are
rounded, normally to either two or three decimal places, and
at such levels of rounding, different sample sizes each with the
same number of successes x often yield the same endpoint. Thus,
it seems reasonable to relax the second monotonicity property
to say that when an additional trial produces a success (failure),
neither confidence limit should decrease (increase).

4.2 Nesting

Another desirable property is nesting: if two confidence in-
tervals having different levels are computed from the same data,
the confidence interval with the higher confidence level should
contain the one with the lower confidence level. For nesting to
occur at all confidence levels, as the level increases the lower
limits for each x must be nonincreasing and the upper limits
must be nondecreasing. Now consider how the nesting issue
manifests itself in the plot of the cpf. We use two specific cases
to illustrate, but the argument is essentially the same for any
length minimizing procedure.

Look first at Figure 5 and imagine steadily raising the bottom
boundary of Figure 5—that is, the confidence level—and con-
sider how the confidence intervals change as the level increases.
The intersections of the Type O curves with the confidence level
will move outward, which results in nesting for endpoints deter-
mined in those regions. In the Type I region, none of the interval
endpoints determined by the 12 cusps change until the confi-
dence level starts to pass above them. For example, the second
cusp from the left (along N7) marks the transition from AC(1–8)
to AC(2–9), thereby determining u1 and l9 for confidence
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levels at and below this cusp. When the confidence level rises
just above the cusp, the procedure must replace the portion of
the cpf that is now below 1−α with a segment from the higher
necklace N8. The only available segment that maintains mono-
tonicity in l and u is AC(1–9). As the confidence level rises, the
interval on which AC(1–9) is used progressively widens. This
still preserves nesting, as u1 moves to the right and l9 moves to
the left as the confidence level increases.

The above arguments show that nesting normally occurs as
the confidence level rises. Unfortunately, a problem arises for
confidence levels that are close to the peak height of an accep-
tance curve. An example is the case shown in Figure 7, where
the 90% confidence level is slightly lower than the peak of
AC(1–5). Note that the cpf of a length minimizing procedure
must use the entire portion of AC(1–5) shown, as no other ac-
ceptance curve of minimal span is available. To avoid a gap in
the confidence interval for x = 0, after using this segment the cpf
must avoid a transition from AC(1–5) to AC(0–5) and instead
must move to AC(1–6), the only alternative acceptance curve
of minimal span. Thus for any length minimizing procedure at
90% confidence, the right end of the visible portion of AC(1–5)
represents l6. Now consider the higher confidence level 93.85%
that intersects the cusp where AC(0–5) meets AC(1–6). See Fig-
ure 8. The cpf of any length minimizing procedure for this level
would necessarily follow the necklace N5 near this cusp, thereby
determining the lower confidence limit for x = 6 as the point
where AC(0–5) transitions to AC(1–6), shown in Figure 8 as l∗6 .
However, l∗6 is larger than the value of l6 previously determined
for 90% confidence, hence nesting is violated.

Blaker (2000) proved that no length minimizing confidence
procedure obeys the nesting property for all x. Figure 8 reveals
that the reason for this unfortunate result is that the peaks of any
necklace are offset horizontally from the cusps of the necklace
lying just above it (except for n odd at p = 0.5). We verify this
analytically in the Appendix. Figure 8 shows that the peak of
AC(1–5) is to the left of the cusp between AC(0–5) and AC(1–6).
Although length-minimizing procedures do not generally have

Figure 8. Sections of LCO cpfs for n = 20. Comparing the cpf for
two different confidence levels shows how nesting can be violated. The
solid curves show the cpf for 1−α = 93.85%; the dashed curves show
portions of the cpf for 1−α = 90%. Nesting is violated since the lower
confidence limit for x = 6 at level 93.85%, l∗6 , lies to the right of the
corresponding limit for level 90%, l6.

to transition at the cusps, when the confidence level is equal
to the height of a cusp they must do so, leading to a nesting
violation.

Surprisingly, therefore, both the existence of confidence sets
with gaps and of nonnested length minimizing confidence pro-
cedures arise from the same phenomenon. Both pathologies
involve confidence levels that pass just below the peak of an
acceptance curve. The values of p that cause a nesting viola-
tion in the case illustrated above, those between l6 = 0.141 and
l∗6 = 0.147 in Figure 8, represent precisely the second interval
in Sterne’s confidence set for x = 0.

5. COMPARISON OF LCO AND TWO POPULAR
EXACT METHODS

In this section, we briefly introduce two popular exact meth-
ods and compare their performance with the LCO procedure:

5.1 Blyth–Still–Casella Method

As indicated earlier, Casella (1986) determined the com-
plete collection of length minimizing binomial procedures.
The Blyth–Still–Casella procedure (BSC), available in the
StatXactTM software, is the one member of this set that has
been widely used, particularly by biomedical researchers.

5.2 Blaker’s Method

For each p, determine the tail probability Tp(x) = min(P(X ≤
x), P(X ≥ x)). Then, p is included in the confidence interval for
x if and only if P(X: Tp(X) ≤ Tp(x)) > α. The primary advantage
of Blaker’s method, and its raison d’être, is that two confidence
intervals based on the same data but at different confidence levels
are guaranteed to be nested. Consequently, Blaker’s procedure
is not length minimizing.

5.3 Comparison Results

Both LCO and BSC are length minimizing; Blaker’s method
is not. The excess average length of Blaker’s method is fairly
small, never being more than 0.62% for 1 ≤ n ≤ 100 and
confidence levels 90%, 95%, and 99%.

While Blaker’s method produces nested intervals in every
case, for BSC and LCO, comparing all 90% and 95% intervals
and all 95% and 99% intervals reveals that there are no cases
where BSC intervals are not nested and only two out of all 10,300
comparisons where nesting is violated for LCO—and then only
slightly (n = 21; l6(0.90) = 0.132 > l6(0.95) = 0.130 and its
equivariant counterpart for x = 15). Thus, nesting violations
are a virtual nonissue for all three methods, at least at the most
commonly used confidence levels.

All three methods are monotonic in x: for fixed n, both confi-
dence limits always increase in the case of an additional success.
As for monotonicity in n, BSC, Blaker’s method and LCO each
have a very small number of exceptions. For LCO, the proportion
of comparisons in which an additional trial resulting in a failure
gives a higher rather than a lower confidence limit is 0.05% for
lower confidence limits and 0.89% for upper confidence limits.
BSC and Blaker’s method have even fewer violations. These
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Figure 9. Monotonicity behavior of LCO 95% confidence intervals
for x = 5, n ≤ 50. Cases where monotonicity is violated are indicated
by asterisks. There are no violations for 43 < n ≤ 100; only 30% of all
x values have any violations of monotonicity for n ≤ 100.

rates are based on confidence limits at three decimal places. The
sizes of the violations for all three methods are generally quite
small; the largest order reversal of endpoints for LCO is only
0.013. Among all LCO confidence intervals at 90%, 95%, and
99%, more than 70% of the x values between 0 and 100 have
no violations of monotonicity in n for n ≤ 100. Figure 9 shows
how close to monotonic in n the LCO intervals are for a typical
case among the 30% where violations do occur.

As strict confidence procedures, Blaker, BSC, and LCO each
meet or exceed 1−α for all p. Coverage can differ significantly,

however. Figure 10 gives a comparison of LCO and BSC for
the case n = 12, 1−α = 90%. LCO’s coverage is consider-
ably higher in several regions of the parameter space. For p ≈
0.184 and 0.816, for example, BSC will fail to contain the true
parameter nearly twice as often as LCO.

The overall coverage performance of a specific binomial
confidence procedure can be assessed by its mean coverage
M = ∫ 1

0 CP(p)dp. Mean coverage can be thought of as the
posterior mean coverage with respect to a uniform prior on
p. Figure 11 reflects the consistent edge that LCO has in mean
coverage versus BSC. LCO and Blaker’s method have nearly
equal mean coverage for all three confidence levels in practi-
cally every case. The reason that Blaker is competitive with
LCO in coverage, however, is that Blaker’s method is not length
minimizing.

6. APPROXIMATE BINOMIAL CONFIDENCE
PROCEDURES

We call a confidence procedure an approximate procedure
when the coverage of the procedure falls below the stated con-
fidence level, but not by a large amount (at least for most p).
Approximate binomial confidence procedures are widely used,
although it is not clear that users are always aware that they vio-
late the strict definition of a confidence procedure. Allowing the
cpf to fall below the nominal confidence level typically results
in smaller confidence intervals than strict procedures produce.

6.1 Assessing the Performance of an Approximate
Binomial Confidence Procedure

The judgment of what might be considered a “best” approx-
imate confidence procedure is more subjective than for strict
procedures. Again though, short intervals and high coverage, in
that order, should be primary goals. The two coverage criteria

Figure 10. Coverage probability functions for the LCO and Blyth–Still–Casella Confidence Procedures, n = 12, 1−α = 90%. Solid lines
represent the cpf for LCO; dashed line segments show the cpf for BSC where it differs from LCO.
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Figure 11. Mean noncoverage for LCO and BSC 90% confidence procedures.

most approximate procedures have been judged by are minimum
and mean coverage.

Considering first minimum coverage, suppose some value
1−α′ < 1−α is regarded as an acceptable minimum. If subject
to this standard the goal is to minimize average confidence
interval length, then one should choose a length-minimizing
procedure at level 1−α′. Achieving high coverage wherever
it does not incur a cost in length is even more desirable for
approximate confidence procedures than for strict ones, since
this will minimize the amount of the parameter space in which
the cpf falls below 1−α and maximize overall mean coverage.
Consequently, the LCO procedure (now at level 1−α′) is again
an ideal choice.

Another possible criterion is integrated absolute error, A =∫ 1
0 |CP(p) − (1 − α)|dp (see, e.g., Brown, Cai and DasGupta

2001); this measure assesses how close the cpf stays to the
nominal confidence level. Integrated squared error may also be
used. These criteria value equally a situation when the cpf is
below 1−α and an instance when it is above, yet those two
cases have entirely different ramifications, as the latter repre-
sents inadequate coverage, while the former merely represents a
“bonus”—extra coverage not promised by the stated confidence
level. A procedure which achieves coverage well above the con-
fidence level for a large portion of the parameter space should
not be penalized.

We propose instead to measure only the overall extent to
which a procedure falls below the stated level with D =∫ 1

0 [1 − α − CP(p)]I [CP(p) < 1 − α]dp, which we call the
deficit of the procedure. D computes the total area captured
below the confidence level and above the cpf (see Figure 12).

Figure 12. The deficit of the adjusted Wald procedure for n = 8, 1−α = 90%.
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Figure 13. Cpf for the LCO mean coverage adjusted procedure, n = 50, 1−α = 99%.

If a uniform prior is placed on p, then D represents the chance
that the confidence interval will fail to cover the true value of
p because of the fact that the procedure is approximate rather
than strict. D together with minimum coverage provides a good
summary of the degree to which an approximate procedure falls
short of being a strict one.

One way to create an approximate confidence procedure is
to recalibrate a strict procedure to a lower actual level so that
its mean coverage equals 1−α (see Reiczigel 2003). Figure 13
shows the cpf of an LCO procedure adjusted to have mean cov-
erage 99%. Note the flat “bottom”—that is, minimum coverage
is achieved at a very large number of points, which produces
small intervals.

6.2 A Comparison of Several Popular Approximate
Confidence Procedures

In this section, we compare the performance of the LCO
procedure adjusted to have mean coverage 1−α with that of
several well known approximate procedures: Wald, Adjusted
Wald, Jeffreys and Mid-P (see Brown, Cai and DasGupta 2001),
and Wilson’s score (Wilson (1927)). Table 1 gives results for
average length, minimum coverage, mean coverage, and deficit
for n = 20; results were similar for other n. We show Wald in
parentheses because its coverage properties are so poor that it
does not possess the qualities we would want for a satisfactory
approximate confidence procedure.

At each confidence level, the adjusted LCO procedure
achieves the shortest intervals of any method aside from Wald,
and is even competitive with Wald at both the 90% and 95%
levels despite Wald’s low coverage. Since coverage and length
are closely related, procedures that give shorter intervals should
yield lower coverage. Table 1 shows this is generally the case;
for example, adjusted Wald scores high on all measures of cov-
erage but produces relatively long intervals, whereas Jeffreys
produces fairly short intervals but has relatively low minimum
and mean coverage and a high deficit. Adjusted LCO however,
despite producing intervals nearly as short as Wald’s, performs
quite well on all three measures. In fact, adjusted LCO gener-
ally outperforms all of the other procedures in coverage relative
to length. The most pronounced advantage adjusted LCO has,
however, is for minimum coverage. Only adjusted Wald roughly
matches adjusted LCO on this measure; however adjusted Wald
produces the longest intervals, as noted by Brown, Cai and Das-
Gupta (2001). The superior performance of the adjusted LCO
procedure on minimum coverage is a direct result of its cpf’s
flat “bottom,” a property that commonly used approximate pro-
cedures do not possess.

7. STRICT OR APPROXIMATE?

In applications, little attention has been paid to whether a
binomial confidence procedure is strict or approximate. This is
somewhat understandable given that for many other statistical

Table 1. Minimum and mean coverage and deficit of six approximate binomial confidence procedures for n = 20 (values shown are in percent)

90% 95% 99%

Conf Level: Avg L Min Cov Mean Cov Deficit Avg L. Min Cov Mean Cov Deficit Avg L. Min Cov Mean Cov Deficit

Adj. LCO 0.269 85.90 90.00 0.93 0.319 92.91 95.00 0.64 0.412 98.40 99.00 0.14
Jeffreys 0.273 82.04 90.17 1.19 0.323 89.34 95.11 0.75 0.417 96.59 99.04 0.17
Wilson 0.275 79.77 90.70 0.78 0.325 83.66 95.30 0.53 0.417 88.84 98.84 0.30
Mid-P 0.283 84.11 91.74 0.46 0.335 92.93 96.11 0.26 0.431 98.68 99.32 0.04
Adj. Wald 0.284 86.67 91.95 0.36 0.337 92.92 96.18 0.16 0.435 98.08 99.22 0.07
(Wald) 0.268 0.00 80.54 9.51 0.316 0.00 84.58 10.42 0.403 0.00 88.28 10.72
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Table 2. Reduction in average confidence interval lengths using ad-
justed LCO procedure rather than strict LCO procedure

Confidence
level n = 5 10 20 50 100

90% 14.2% 13.5% 9.1% 6.0% 4.5%
95% 13.7% 10.8% 7.6% 4.7% 3.6%
99% 9.6% 6.7% 6.0% 3.8% 2.8%

situations a procedure having a constant or nearly constant cpf
of level 1 − α can be easily achieved. For the one sample
binomial problem, however, the differences between strict and
approximate are significant enough to warrant attention.

Approximate procedures violate the formal definition of
a strict confidence procedure, with the reward being inter-
vals of reduced length. How much is gained by bending the
rules? Table 2 gives for various n and 1−α the reduction
in average confidence interval lengths for strict and approx-
imate (mean coverage = 1−α) LCO confidence procedures.
The reduction in mean length from using approximate mean
coverage adjusted intervals is greatest for small n and lower
confidence levels. Table 2 shows that length savings are sub-
stantial in many cases. Even for n = 50 and 1−α = 95%, where
the 4.7% reduction in mean length is relatively small, an ap-
proximate procedure achieves intervals as short on average as
those of a strict procedure that uses 10% more data.

Table 2 lends support to Agresti and Coull’s (1998) con-
tention that “approximate is better than exact” when it comes to
one sample binomial confidence procedures. While an individ-
ual in a “single use” situation might prefer the stringent coverage
guarantee of a strict procedure, a person or agency that com-
putes many confidence intervals can feel reasonably confident
that using mean coverage adjusted approximate procedures will
result in the overall proportion of those intervals that cover the
parameter matching well to the nominal level.

Given the substantial discrepancies between the actual cpf
and the stated confidence level for the one sample binomial
problem and other situations involving data with substantial
discreteness, we propose a “truth in advertising” qualifier when
reporting confidence intervals for such situations. If an approx-
imate procedure is used, full disclosure would mean reporting
that fact along with the minimum coverage level. If a strict con-
fidence procedure is used, both the nominal and average level of
coverage could be reported. For example, for one sample bino-
mial data with n = 30 one could report that the LCO procedure
was employed to obtain a 90% confidence interval (mean cov-
erage: 92.5%) for the success parameter. As mean coverage is
typically much higher than the confidence level, a better sense
of the degree of confidence would then be conveyed than by just
providing the nominal level.

8. SUMMARY

Since the LCO procedure is superior to other length-
minimizing procedures in combining length minimization with
maximal coverage, we recommend its use. When used as an
approximate confidence procedure LCO has an additional ad-
vantage in that it maintains especially high minimum coverage.

As for the question of strict versus approximate procedures,
Brown, Cai and DasGupta (2001), concurring with Agresti and
Coull (1998), argued that in modern statistical practice, approx-
imate procedures should be preferred. In any case, we believe
that at least for the one sample binomial problem the user should
make clear which type is being used, given their substantial dif-
ference in performance (coverage and length).

APPENDIX

Proof of Proposition 1

Differentiating AC�lu
(p) for Type I curves provides the value

at which AC�lu
(p) achieves its maximum:

pM (l, u; n)

=
(

1 +
[(

n − 1
u

)/(
n − 1
l − 1

)]
1/(u − l + 1)

)−1

. (A.1)

To establish the first part of the proposition, for given u <

n − 1 write the expression inside the brackets in (A.1) as Qn;l,u =
( n − 1

u )/( n − 1
l − 1 ) = ∏u−l

i=0
n−l−i
u−i

. Since each term in the repeated

product is greater than n−u−1
u+1 , we have Qn;l,u > ( n−u−1

u+1 )u−l+1;
thus

(Qn;l,u)u−l+2 > (Qn;l,u)u−l+1

(
n − u − 1

u + 1

)u−l+1

=
[
Qn;l,u

(
n − u − 1

u + 1

)]u−l+1

= (Qn;l,u+1)u−l+1.

Taking the (u–l+1)(u–l+2)th root of both sides of the in-
equality then yields

(Qn;l,u)1/(u−l+1) > (Qn;l,u+1)1/((u+1)−l+1).

It follows immediately that pM (l, u; n) < pM (l, u + 1; n),
proving the first part of the lemma. The second part follows
similarly. �
Calculation of the Location of Necklace Cusps

Let pC(l, u; n) denote the cusp at the intersection of
AC((l−1)–(u−1)) and AC(l–u). Setting P(l−1 ≤ X ≤ u−1)
= P(l ≤ X ≤ u) yields immediately

P (X = l − 1) = P (X = u), or

(
n

l − 1

)
pl−1(1 − p)n−l+1

=
(

n

u

)
P u(1 − p)n−u,

which gives ( p

1−p
)u−l+1 = ( n

l − 1 )/( n

u ). Solving for p yields
the location of the cusp:

PC(1, u; n) =
(

1 +
[(

n

u

)/(
n

l − 1

)]1/(u−l+1)
)−1

. (A.2)

Interestingly, the form of (A.2) is just the same as (A.1), and
in fact pC(l, u; n) = pM (l, u; n + 1).

Now let us compare pC(l, u; n) to pM (l, u − 1; n), the loca-
tion of the peak of AC(l–(u−1)), which is the peak most nearly
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in line with the cusp. We can do this by studying the ratio of
their kernels

Qn+1;l,u

Qn;l,u−1
= n + 1 − l

u
.

This ratio is not equal to 1 unless l + u = n + 1, in
which casepM (l, u − 1; n) = 0.5, thus in all other cases the
peak of AC(l–(u−1)) is not aligned with the cusp joining
AC((l−1)–(u−1)) and AC(l–u). It is not difficult to show
that whenever l + u < n + 1, we have pM (l, u − 1; n) <

pC(l, u; n) < 0.5, and when l + u > n + 1, pM (l, u − 1; n) >

pC(l, u; n) > 0.5.

[Received June 2013. Revised February 2014.]
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